Abstract

We have used surface micromachining to fabricate suspended InGaAs/InGaAsP quantum well waveguides that are supported by lateral tethers. The average measured TE propagation loss in our samples is 4.1 dB/cm, and the average measured TE loss per tether pair is 0.21 dB. These measurements are performed at wavelengths in the optical L-band, just 125 nm below the quantum well band gap.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8, 64–72 (2002).
    [CrossRef]
  2. M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
    [CrossRef]
  3. M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
    [CrossRef]
  4. J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
    [CrossRef]
  5. I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  7. P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors,” Ultramicroscopy 86, 191–206 (2001).
    [CrossRef] [PubMed]
  8. T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, “Laterally patterned band structure in micromachined semiconductors,” Appl. Phys. Lett. 83, 4933–4935 (2003). http://link.aip.org/link/?APL/83/4933/1.
    [CrossRef]
  9. T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
    [CrossRef]
  10. D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
    [CrossRef]
  11. A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” pp. 3906–3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.
  12. D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, “Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication,” pp. 3152–3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.
  13. R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
    [CrossRef]
  14. M.-K. Chin, C.-W. Lee, S.-Y. Lee, and S. Darmawan, “High-index-contrast waveguides and devices,” Appl. Opt. 44, 3077–3086 (2005).
    [CrossRef] [PubMed]
  15. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302.
    [CrossRef] [PubMed]
  16. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
    [CrossRef] [PubMed]
  17. T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns,” IEEE Photon. Technol. Lett. 16, 2036–2038 (2004).
    [CrossRef]

2007 (2)

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

2006 (1)

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
[CrossRef]

2005 (3)

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

M.-K. Chin, C.-W. Lee, S.-Y. Lee, and S. Darmawan, “High-index-contrast waveguides and devices,” Appl. Opt. 44, 3077–3086 (2005).
[CrossRef] [PubMed]

2004 (3)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns,” IEEE Photon. Technol. Lett. 16, 2036–2038 (2004).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

2003 (2)

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302.
[CrossRef] [PubMed]

T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, “Laterally patterned band structure in micromachined semiconductors,” Appl. Phys. Lett. 83, 4933–4935 (2003). http://link.aip.org/link/?APL/83/4933/1.
[CrossRef]

2002 (1)

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8, 64–72 (2002).
[CrossRef]

2001 (1)

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors,” Ultramicroscopy 86, 191–206 (2001).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

1991 (1)

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

Abeles, J. H.

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Almeida, V. R.

Amarnath, K.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
[CrossRef]

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

An, H.

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

Baets, R.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

Bakke, T.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8, 64–72 (2002).
[CrossRef]

Biermann, M. L.

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, “Laterally patterned band structure in micromachined semiconductors,” Appl. Phys. Lett. 83, 4933–4935 (2003). http://link.aip.org/link/?APL/83/4933/1.
[CrossRef]

Binari, S. C.

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns,” IEEE Photon. Technol. Lett. 16, 2036–2038 (2004).
[CrossRef]

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Boos, J. B.

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, “Laterally patterned band structure in micromachined semiconductors,” Appl. Phys. Lett. 83, 4933–4935 (2003). http://link.aip.org/link/?APL/83/4933/1.
[CrossRef]

Borghs, G.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

Calhoun, L. C.

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, “Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication,” pp. 3152–3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.

Chan, W. K.

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

Chin, M.-K.

Chuang, W. H.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
[CrossRef]

D’Urso, B.

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” pp. 3906–3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Darmawan, S.

Datskos, P. G.

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors,” Ultramicroscopy 86, 191–206 (2001).
[CrossRef] [PubMed]

Datskou, I.

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors,” Ultramicroscopy 86, 191–206 (2001).
[CrossRef] [PubMed]

Datta, M.

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

Deri, R. J.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

Ghodssi, R.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
[CrossRef]

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

Goetz, P. G.

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns,” IEEE Photon. Technol. Lett. 16, 2036–2038 (2004).
[CrossRef]

Göosele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Green, N.

D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, “Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication,” pp. 3152–3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.

Ho, P. T.

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

Kanakaraju, S.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
[CrossRef]

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, “Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication,” pp. 3152–3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.

Kapon, E.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

Katzer, D. S.

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, “Laterally patterned band structure in micromachined semiconductors,” Appl. Phys. Lett. 83, 4933–4935 (2003). http://link.aip.org/link/?APL/83/4933/1.
[CrossRef]

Kelly, D. P.

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

Khalfin, V. B.

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Kwakernaak, M. H.

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

Lagae, L.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

Lean, J. J.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8, 64–72 (2002).
[CrossRef]

Lee, C.-W.

Lee, R.

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” pp. 3906–3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, S.-Y.

Lipp, S. A.

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

Lipson, M.

Mahon, R.

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns,” IEEE Photon. Technol. Lett. 16, 2036–2038 (2004).
[CrossRef]

Müuller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” pp. 3906–3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.

Panepucci, R. R.

Park, D.

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, “Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication,” pp. 3152–3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.

Pruessner, M. W.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
[CrossRef]

Pruessner, M.W.

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

Rabinovich, W. S.

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns,” IEEE Photon. Technol. Lett. 16, 2036–2038 (2004).
[CrossRef]

T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, “Laterally patterned band structure in micromachined semiconductors,” Appl. Phys. Lett. 83, 4933–4935 (2003). http://link.aip.org/link/?APL/83/4933/1.
[CrossRef]

D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, “Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication,” pp. 3152–3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.

Rajic, S.

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors,” Ultramicroscopy 86, 191–206 (2001).
[CrossRef] [PubMed]

Roels, J.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” pp. 3906–3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.

Senesac, L. R.

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors,” Ultramicroscopy 86, 191–206 (2001).
[CrossRef] [PubMed]

Siwak, N.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
[CrossRef]

Soukoulis, C. M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Spahn, O. B.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8, 64–72 (2002).
[CrossRef]

Stievater, T. H.

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns,” IEEE Photon. Technol. Lett. 16, 2036–2038 (2004).
[CrossRef]

T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, “Laterally patterned band structure in micromachined semiconductors,” Appl. Phys. Lett. 83, 4933–4935 (2003). http://link.aip.org/link/?APL/83/4933/1.
[CrossRef]

D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, “Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication,” pp. 3152–3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.

Sullivan, C. T.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8, 64–72 (2002).
[CrossRef]

Taillaert, D.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

Thourhout, D. V.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

Tigges, C. P.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8, 64–72 (2002).
[CrossRef]

Vlaminck, I. D.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Whaley, J. R. D.

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” pp. 3906–3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp, W. K. Chan, H. An, and J. H. Abeles, “Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides,” Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007). http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, “Laterally patterned band structure in micromachined semiconductors,” Appl. Phys. Lett. 83, 4933–4935 (2003). http://link.aip.org/link/?APL/83/4933/1.
[CrossRef]

IEEE J. Quantum Electron. (1)

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8, 64–72 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, “Monolithic suspended optical waveguides for InP MEMS,” IEEE Photon. Technol. Lett. 16, 1298–1300 (2004).
[CrossRef]

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns,” IEEE Photon. Technol. Lett. 16, 2036–2038 (2004).
[CrossRef]

J. Appl. Phys. (1)

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, “Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures,” J. Appl. Phys. 97, 114326 (2005). http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

J. Microelectromech. Syst. (1)

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, “InP-Based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Microeng. 16, 832–842 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müuller, R. B. Wehrspohn, U. Göosele, and V. Sandoghdar, “Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,” Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Ultramicroscopy (1)

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors,” Ultramicroscopy 86, 191–206 (2001).
[CrossRef] [PubMed]

Other (2)

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” pp. 3906–3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.

D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, “Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication,” pp. 3152–3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a): An SEM image of a 2 µm wide suspended MQW waveguide. (b): An SEM image of the end facet of the 2 µm wide waveguide.

Fig. 2.
Fig. 2.

(a): Measured transmission through a 4 µm wide waveguide. The loss includes propagation loss, tether loss, and insertion loss. (b): Measured and calculated group index for a 4 µm wide waveguide.

Fig. 3.
Fig. 3.

(a): Measured TE loss through a set of 4 µm wide waveguides in sample A, as a function of the number of tether pairs in the waveguide. The y-intercept of the fringe contrast loss is the propagation loss, whereas the y-intercept of the normalized transmission loss includes both the propagation loss and insertion loss. The slope of both curves is the loss per tether pair.

Tables (1)

Tables Icon

Table 1. Measured loss parameters of 4 µm wide waveguides from three different samples for wavelengths between 1600 nm and 1640 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 L n g
n g = c v g = c d ω d β = n eff λ d n eff d λ
Re α L = 1 1 K 2 K

Metrics