Abstract

We have used surface micromachining to fabricate suspended InGaAs/InGaAsP quantum well waveguides that are supported by lateral tethers. The average measured TE propagation loss in our samples is 4.1 dB/cm, and the average measured TE loss per tether pair is 0.21 dB. These measurements are performed at wavelengths in the optical L-band, just 125 nm below the quantum well band gap.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Top. Quantum Electron. 8,64-72 (2002).
    [CrossRef]
  2. M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
    [CrossRef]
  3. M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
    [CrossRef]
  4. J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp,W. K. Chan, H. An, and J. H. Abeles, "Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides," Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
    [CrossRef]
  5. I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, "Detection of nanomechanical motion by evanescent light wave coupling," Appl. Phys. Lett. 90, 233116 (2007). URL http://link.aip.org/link/?APL/90/233116/1.
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
    [CrossRef] [PubMed]
  7. P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, "Fabrication of quantum well microcantilever photon detectors," Ultramicroscopy 86,191-206 (2001).
    [CrossRef] [PubMed]
  8. T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, "Laterally patterned band structure in micromachined semiconductors," Appl. Phys. Lett. 83, 4933-4935 (2003). URL http://link.aip.org/link/?APL/83/4933/1.
    [CrossRef]
  9. T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, "Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures," J. Appl. Phys. 97, 114326 (2005). URL http://link.aip.org/link/?JAP/97/114326/1.
    [CrossRef]
  10. D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
    [CrossRef]
  11. A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, "InGaAsP photonic band gap crystal membrane microresonators," pp. 3906-3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.
  12. D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, "Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication," pp. 3152-3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.
  13. R. J. Deri and E. Kapon, "Low-loss III-V semiconductor optical waveguides," IEEE J. Quantum Electron. 27,626-640 (1991).
    [CrossRef]
  14. M.-K. Chin, C.-W. Lee, S.-Y. Lee, and S. Darmawan, "High-index-contrast waveguides and devices," Appl. Opt. 44,3077-3086 (2005).
    [CrossRef] [PubMed]
  15. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302.
    [CrossRef] [PubMed]
  16. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. M¨uller, R. B. Wehrspohn, U. G¨osele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
    [CrossRef] [PubMed]
  17. T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16,2036-2038 (2004).
    [CrossRef]

2006 (1)

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
[CrossRef]

2005 (2)

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

M.-K. Chin, C.-W. Lee, S.-Y. Lee, and S. Darmawan, "High-index-contrast waveguides and devices," Appl. Opt. 44,3077-3086 (2005).
[CrossRef] [PubMed]

2004 (2)

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16,2036-2038 (2004).
[CrossRef]

2002 (1)

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Top. Quantum Electron. 8,64-72 (2002).
[CrossRef]

2001 (1)

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, "Fabrication of quantum well microcantilever photon detectors," Ultramicroscopy 86,191-206 (2001).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

1991 (1)

R. J. Deri and E. Kapon, "Low-loss III-V semiconductor optical waveguides," IEEE J. Quantum Electron. 27,626-640 (1991).
[CrossRef]

Amarnath, K.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
[CrossRef]

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

Bakke, T.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Top. Quantum Electron. 8,64-72 (2002).
[CrossRef]

Binari, S. C.

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16,2036-2038 (2004).
[CrossRef]

Calhoun, L. C.

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

Chin, M.-K.

Chuang, W. H.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Darmawan, S.

Datskos, P. G.

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, "Fabrication of quantum well microcantilever photon detectors," Ultramicroscopy 86,191-206 (2001).
[CrossRef] [PubMed]

Datskou, I.

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, "Fabrication of quantum well microcantilever photon detectors," Ultramicroscopy 86,191-206 (2001).
[CrossRef] [PubMed]

Datta, M.

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

Deri, R. J.

R. J. Deri and E. Kapon, "Low-loss III-V semiconductor optical waveguides," IEEE J. Quantum Electron. 27,626-640 (1991).
[CrossRef]

Ghodssi, R.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
[CrossRef]

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

Goetz, P. G.

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16,2036-2038 (2004).
[CrossRef]

Ho, P. T.

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

Kanakaraju, S.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
[CrossRef]

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

Kapon, E.

R. J. Deri and E. Kapon, "Low-loss III-V semiconductor optical waveguides," IEEE J. Quantum Electron. 27,626-640 (1991).
[CrossRef]

Kelly, D. P.

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Lean, J. J.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Top. Quantum Electron. 8,64-72 (2002).
[CrossRef]

Lee, C.-W.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Lee, S.-Y.

Mahon, R.

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16,2036-2038 (2004).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Pruessner, M. W.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
[CrossRef]

Pruessner, M.W.

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

Rabinovich, W. S.

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16,2036-2038 (2004).
[CrossRef]

Rajic, S.

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, "Fabrication of quantum well microcantilever photon detectors," Ultramicroscopy 86,191-206 (2001).
[CrossRef] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Senesac, L. R.

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, "Fabrication of quantum well microcantilever photon detectors," Ultramicroscopy 86,191-206 (2001).
[CrossRef] [PubMed]

Siwak, N.

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
[CrossRef]

Spahn, O. B.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Top. Quantum Electron. 8,64-72 (2002).
[CrossRef]

Stievater, T. H.

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16,2036-2038 (2004).
[CrossRef]

Sullivan, C. T.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Top. Quantum Electron. 8,64-72 (2002).
[CrossRef]

Tigges, C. P.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Top. Quantum Electron. 8,64-72 (2002).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. J. Deri and E. Kapon, "Low-loss III-V semiconductor optical waveguides," IEEE J. Quantum Electron. 27,626-640 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Top. Quantum Electron. 8,64-72 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16,2036-2038 (2004).
[CrossRef]

D. P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L. C. Calhoun, and R. Ghodssi, "Monolithic suspended optical waveguides for InP MEMS," IEEE Photon. Technol. Lett. 16,1298-1300 (2004).
[CrossRef]

J. Microelectromech. Syst. (1)

M.W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Microelectromech. Syst. 14,1070-1081 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

M. W. Pruessner, N. Siwak, K. Amarnath, S. Kanakaraju, W. H. Chuang, and R. Ghodssi, "InP-Based optical waveguide MEMS switches with evanescent coupling mechanism," J. Micromech. Microeng. 16,832-842 (2006).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Ultramicroscopy (1)

P. G. Datskos, S. Rajic, L. R. Senesac, and I. Datskou, "Fabrication of quantum well microcantilever photon detectors," Ultramicroscopy 86,191-206 (2001).
[CrossRef] [PubMed]

Other (8)

T. H. Stievater, W. S. Rabinovich, J. B. Boos, D. S. Katzer, and M. L. Biermann, "Laterally patterned band structure in micromachined semiconductors," Appl. Phys. Lett. 83, 4933-4935 (2003). URL http://link.aip.org/link/?APL/83/4933/1.
[CrossRef]

T. H. Stievater, W. S. Rabinovich, D. Park, P. G. Goetz, J. B. Boos, D. S. Katzer, M. L. Biermann, S. Kanakaraju, and L. C. Calhoun, "Strain relaxation, band-structure deformation, and optical absorption in free-hanging quantum-well microstructures," J. Appl. Phys. 97, 114326 (2005). URL http://link.aip.org/link/?JAP/97/114326/1.
[CrossRef]

J. R. D. Whaley, M. H. Kwakernaak, V. B. Khalfin, S. A. Lipp,W. K. Chan, H. An, and J. H. Abeles, "Observation of low optical overlap mode propagation in nanoscale indium phosphide membrane waveguides," Appl. Phys. Lett. 90, 011114 (2007). URL http://link.aip.org/link/?APL/90/011114/1.
[CrossRef]

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, "Detection of nanomechanical motion by evanescent light wave coupling," Appl. Phys. Lett. 90, 233116 (2007). URL http://link.aip.org/link/?APL/90/233116/1.
[CrossRef]

A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, "InGaAsP photonic band gap crystal membrane microresonators," pp. 3906-3910 (AVS, 1998). URL http://link.aip.org/link/?JVB/16/3906/1.

D. Park, T. H. Stievater, W. S. Rabinovich, N. Green, S. Kanakaraju, and L. C. Calhoun, "Characterization of hydrogen silsesquioxane as a Cl[sub 2]/BCl[sub 3] inductively coupled plasma etch mask for air-clad InP-based quantum well waveguide fabrication," pp. 3152-3156 (AVS, 2006). URL http://link.aip.org/link/?JVB/24/3152/1.

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302.
[CrossRef] [PubMed]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. M¨uller, R. B. Wehrspohn, U. G¨osele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004). URL http://link.aps.org/abstract/PRL/v92/e113903.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a): An SEM image of a 2 µm wide suspended MQW waveguide. (b): An SEM image of the end facet of the 2 µm wide waveguide.

Fig. 2.
Fig. 2.

(a): Measured transmission through a 4 µm wide waveguide. The loss includes propagation loss, tether loss, and insertion loss. (b): Measured and calculated group index for a 4 µm wide waveguide.

Fig. 3.
Fig. 3.

(a): Measured TE loss through a set of 4 µm wide waveguides in sample A, as a function of the number of tether pairs in the waveguide. The y-intercept of the fringe contrast loss is the propagation loss, whereas the y-intercept of the normalized transmission loss includes both the propagation loss and insertion loss. The slope of both curves is the loss per tether pair.

Tables (1)

Tables Icon

Table 1. Measured loss parameters of 4 µm wide waveguides from three different samples for wavelengths between 1600 nm and 1640 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 L n g
n g = c v g = c d ω d β = n eff λ d n eff d λ
Re α L = 1 1 K 2 K

Metrics