Abstract

We present a novel apodisation scheme for photo-induced waveguide gratings. The apodisation is implemented with double exposures that have reversely varying duty cycles. We have successfully applied the proposed scheme to remove the sidelobes of long period gratings (LPGs). We also observed for the first time super strong sidelobes in LPGs when creating them with only a single varying-duty-cycle exposure. The strong sidelobes can be well explained with a Mach-Zehnder interference model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263 (1997).
    [CrossRef]
  2. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58, (1996).
    [CrossRef]
  3. J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D.C. Johnson and L.E. Erickson, "Apodization of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency," Electron. Lett. 31, 222, (1995).
    [CrossRef]
  4. J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau and M. J. Rooks, "Moire phase masks for automatic pure apodisation of fiber Bragg gratings," Electron. Lett. 32, 2260 (1996).
    [CrossRef]
  5. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, "Complex grating structures with uniform phase masks based on the moving fiber-exposurening beam technique," Opt. Lett. 20, 2051 (1995).
    [CrossRef] [PubMed]
  6. B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, "Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask," Electron. Lett. 31, 224 (1995).
    [CrossRef]
  7. R. Kashyap, A. Swanton and D. J. Armes: "Simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1226 (1996).
    [CrossRef]
  8. J. B. Jensen, N. Plougmann, H. -J. Deyerl, P. Varming, J. Hübner, and M. Kristensen, "Polarization control method for ultraviolet writing of advanced Bragg gratings," Opt. Lett. 27, 1004 (2002).
    [CrossRef]
  9. K. -P. Chuang, Y. Lai, and L. -G. Sheu, "Complex fiber grating structures fabricated by sequential writing with polarization control," Opt. Lett. 29, 340 (2004).
    [CrossRef] [PubMed]
  10. D. Wiesmann, C. David, R. Germann, D. Emi, and G.L. Bona, "Apodized surface-corrugated gratings with varying duty cycles," IEEE Photon. Technol. Lett. 12, 639 (2000).
    [CrossRef]
  11. W. Streifer, D. R. Scifres, and R. D. Burnham, "Coupling coefficient for distributed feedback single- and double-heterostructure diode lasers," IEEE J. Quantum Electron. 11, 867 (1975).
    [CrossRef]
  12. V. Grubsky, A. Skorucak, D. S. Starodubov and J. Feinberg, "Fabrication of spectrally clean, long-period grating filters," in Technical Digest of Optical Fiber Communication Conference, 1999, San Diego, USA, Vol. 4, pp. 174-176.
  13. V. Mizrahi and J. E. Sipe, "Optical properties of photosensitive fiber phase gratings," J. Lightwave Technol. 11, 1513 (1993).
    [CrossRef]
  14. X. J. Gu, "Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings," Opt. Lett. 23, 509 (1998).
    [CrossRef]
  15. X. Shu, L. Zhang, and I. Bennion, "Sensitivity characteristics of long period fiber gratings," J. Lightwave Technol. 20, 255 (2002).
    [CrossRef]
  16. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang and I. Bennion, "Sampled Fiber Bragg Grating for simultaneous refractive index and temperature measurement," Opt. Lett. 26, 774 (2001).
    [CrossRef]

2004 (1)

2002 (2)

2001 (1)

2000 (1)

D. Wiesmann, C. David, R. Germann, D. Emi, and G.L. Bona, "Apodized surface-corrugated gratings with varying duty cycles," IEEE Photon. Technol. Lett. 12, 639 (2000).
[CrossRef]

1998 (1)

1997 (1)

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263 (1997).
[CrossRef]

1996 (3)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58, (1996).
[CrossRef]

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau and M. J. Rooks, "Moire phase masks for automatic pure apodisation of fiber Bragg gratings," Electron. Lett. 32, 2260 (1996).
[CrossRef]

R. Kashyap, A. Swanton and D. J. Armes: "Simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1226 (1996).
[CrossRef]

1995 (3)

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, "Complex grating structures with uniform phase masks based on the moving fiber-exposurening beam technique," Opt. Lett. 20, 2051 (1995).
[CrossRef] [PubMed]

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, "Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask," Electron. Lett. 31, 224 (1995).
[CrossRef]

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D.C. Johnson and L.E. Erickson, "Apodization of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency," Electron. Lett. 31, 222, (1995).
[CrossRef]

1993 (1)

V. Mizrahi and J. E. Sipe, "Optical properties of photosensitive fiber phase gratings," J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

1975 (1)

W. Streifer, D. R. Scifres, and R. D. Burnham, "Coupling coefficient for distributed feedback single- and double-heterostructure diode lasers," IEEE J. Quantum Electron. 11, 867 (1975).
[CrossRef]

Electron. Lett. (4)

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D.C. Johnson and L.E. Erickson, "Apodization of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency," Electron. Lett. 31, 222, (1995).
[CrossRef]

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau and M. J. Rooks, "Moire phase masks for automatic pure apodisation of fiber Bragg gratings," Electron. Lett. 32, 2260 (1996).
[CrossRef]

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, "Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask," Electron. Lett. 31, 224 (1995).
[CrossRef]

R. Kashyap, A. Swanton and D. J. Armes: "Simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1226 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Streifer, D. R. Scifres, and R. D. Burnham, "Coupling coefficient for distributed feedback single- and double-heterostructure diode lasers," IEEE J. Quantum Electron. 11, 867 (1975).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Wiesmann, C. David, R. Germann, D. Emi, and G.L. Bona, "Apodized surface-corrugated gratings with varying duty cycles," IEEE Photon. Technol. Lett. 12, 639 (2000).
[CrossRef]

J. Lightwave Technol. (4)

X. Shu, L. Zhang, and I. Bennion, "Sensitivity characteristics of long period fiber gratings," J. Lightwave Technol. 20, 255 (2002).
[CrossRef]

V. Mizrahi and J. E. Sipe, "Optical properties of photosensitive fiber phase gratings," J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58, (1996).
[CrossRef]

Opt. Lett. (5)

Other (1)

V. Grubsky, A. Skorucak, D. S. Starodubov and J. Feinberg, "Fabrication of spectrally clean, long-period grating filters," in Technical Digest of Optical Fiber Communication Conference, 1999, San Diego, USA, Vol. 4, pp. 174-176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1.
Fig.1.

Schematic of the proposed apodisation method with double exposure and varying duty cycle.

Fig. 2.
Fig. 2.

(a) Schematic of the set up for LPG fabrication. (b) Transmission spectrum of a LPG without apodisation. (c) Transmission spectrum of an apodised LPG after the first exposure. (c) Transmission spectrum of the apodised LPG after two exposures.

Fig. 3.
Fig. 3.

(a) and (b) Two examples of the varying-duty-cycle LPG with only a single exposure. (c) Schematic of Mach-Zehnder interference formed in such a LPG.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k 1 = k 0 sin [ π × δ ( x ) ]
Δ n 1 ¯ = Δ n 0 ¯ δ ( x )
k 2 = k 0 sin [ π × ( 1 δ ( x ) ) ]
Δ n 1 ¯ = Δ n 0 ¯ ( 1 δ ( x ) )
k 1 + k 2 = 2 k 0 sin [ π × δ ( x ) ]
Δ n 1 ¯ + Δ n 2 ¯ = Δ n 0 ¯

Metrics