Abstract

The authors report plasmon-suppressed vertically-standing nanometal-stripe-array structures fabricated by Ar ion sputtering after electron-beam lithography and Ag deposition. When the width of the Ag stripe is comparable to the skin depth of a metal (~20 nm), the particle plasmon resonance is strongly suppressed for electric fields oscillating perpendicular to the length of the stripe. This suppression of the particle plasmon excitation is attributed to the limited movement of free electrons localized near the bottom of Ag stripe. This plasmon-suppressed vertically-standing nanometal structures could be used for broad band polarizers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, "Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures", Phys. Rev. Lett. 91,143901 (2003).
    [CrossRef] [PubMed]
  2. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306,1351-1353 (2004).
    [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
    [CrossRef]
  4. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, GarnettW. Bryant, and F. J. Garcia de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90,057401 (2003).
    [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuat. B 54,3-15 (1999).
    [CrossRef]
  7. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  8. J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, "Experimental study of surface-enhanced second-harmonic generation on silver grating," Phys. Rev. B 32,2227-2232 (1985).
    [CrossRef]
  9. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
    [CrossRef]
  10. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structure: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
    [CrossRef]
  11. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, 2005).
  12. DavidW.  Lynch and W. R. Hunter, "Silver (Ag)," in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).

2004 (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306,1351-1353 (2004).
[CrossRef] [PubMed]

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structure: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

2003 (3)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, "Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures", Phys. Rev. Lett. 91,143901 (2003).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, GarnettW. Bryant, and F. J. Garcia de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90,057401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuat. B 54,3-15 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

1985 (1)

J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, "Experimental study of surface-enhanced second-harmonic generation on silver grating," Phys. Rev. B 32,2227-2232 (1985).
[CrossRef]

J. Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Phys. Rev. B (2)

J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, "Experimental study of surface-enhanced second-harmonic generation on silver grating," Phys. Rev. B 32,2227-2232 (1985).
[CrossRef]

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structure: Experiment and theory," Phys. Rev. B 70, 125113 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, GarnettW. Bryant, and F. J. Garcia de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90,057401 (2003).
[CrossRef] [PubMed]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, "Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures", Phys. Rev. Lett. 91,143901 (2003).
[CrossRef] [PubMed]

Science (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306,1351-1353 (2004).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Sensors Actuat. B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuat. B 54,3-15 (1999).
[CrossRef]

Other (2)

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, 2005).

DavidW.  Lynch and W. R. Hunter, "Silver (Ag)," in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SEM images of fabricated vertically-standing gold nanometal structures: (a) side view (60°). (b) top view. (c) schematic of nanometal stripe array.

Fig. 2.
Fig. 2.

Normalized transmission spectra of vertically-standing Ag nanometal stripe arrays of different periods: (a) TM-like polarization and (b) TE-like polarization. The width and the height of Ag stripes are 20 nm and 200 nm, respectively. The number in (b) is the period of the array.

Fig. 3.
Fig. 3.

Normalized transmission spectra of various widths of Ag stripe arrays: (a) TM-like polarization, (b) TE-like polarization. The numbers in (b) are the widths of the Ag stripe. The pictures on the right of (b) are the vertical cross sections. The Ag stripe of w=25 nm has 125-nm height with PMMA over-coat. The other samples are 55-nm high without PMMA overcoat.

Fig. 4.
Fig. 4.

(a) Description of the transmission contrast of the resonance. (b) Transmission contrasts of Ag stripe arrays as a function of the width. The particle plasmon resonance and the Fanoresonance are considered for TM-like and TE-like polarizations, respectively.

Fig. 5.
Fig. 5.

Calculated normalized transmission spectra and transmission contrasts for Ag stripe arrays of various widths. (a) TM-like polarization, (b) TE-like polarization, (c) Transmission contrasts as a function of width. The dotted lines are the experimental data. The numbers in (b) indicate the width of Ag stripes.

Fig. 6.
Fig. 6.

(a) Normalized transmission spectra of vertically-standing Ag stripe array at TE-like and TM- like polarizations. (b) Ez field distribution and Jx current distribution for the particle plasmon resonance at 488 nm (the blue arrow in (a)). (c) Hz field distribution and Jy current distribution for the Fano-resonance at 558 nm (the red arrow in (a)).

Fig. 7.
Fig. 7.

Transmission spectra of vertically-standing metallic stripes. The period is 200 nm and the height of the stripe is 200nm. The black and the green lines indicate Ag stripes of 20-nm width and 30-nm width, respectively. The red and the blue lines indicate Al stripes of 20-nm width and 30-nm width, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J ( t ) t + γ J ( t ) = ε 0 ω p 2 E ( t ) .

Metrics