Abstract

It is possible for core leaky mode to couple with cladding defect leaky mode when the cladding defect is close to fiber core. Dispersion properties and propagation loss of core mode will be affected in some extent once the coupling occurs. But a complete coupling between two leaky modes not always happens even the phase matching condition is satisfied. Leaky mode coupling in photonic crystal fiber with a hybrid cladding which includes low-index and high-index inclusions at the same time is numerically investigated based on a full vector finite element method. It is found that not only phase matching but also loss matching plays an important role in leaky mode coupling. The originally intersecting dispersion curves for the two leaky modes will split and become another two new curves due to the anti-crossing effect when both the real and imaginary parts of their mode effective refractive indices are equal. There is not splitting but some perturbation in dispersion curves for the two phase matching leaky modes when their losses are not equal. A theoretic explanation is also given to these phenomena.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell and J. P. de Sandro, "Properties of photonic crystal fiber and the effective index model," J. Opt. Soc. Am. A 15, 748-752 (1998).
    [CrossRef]
  3. S. E. Barkou, J. Broeng, and A. Bjarklev, "Silica-air photonic crystal fiber design that permits wave guiding by a true photonic bandgap effect," Opt. Lett. 24, 46-48 (1999).
    [CrossRef]
  4. T. P. White, R. C. McPhedran, and C. M. de Sterke, N. M. Litchinister and B. J. Eggleton, "Resonance and scattering in microstructured optical fibres," Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  5. A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006).
    [CrossRef]
  6. M. Perrin, Y. Quiquempois, G. Bouwmans and M. Douay, "Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes," Opt. Express 15, 13783-13795 (2007).
    [CrossRef] [PubMed]
  7. K. Saitoh, N. Mortensen, and M. Koshiba. "Air-core photonic bang-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004).
    [CrossRef] [PubMed]
  8. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, 1175-1196 (2003).
    [CrossRef] [PubMed]
  9. P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight and P.St.J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
    [CrossRef]
  10. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006).
    [CrossRef] [PubMed]
  11. G. Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006).
    [CrossRef] [PubMed]
  12. S. Selleri, L. Vincetti, A. Cucinotta and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quant. Electron. 33,359-371, 2001.
    [CrossRef]
  13. L. Vincetti, "Confinement losses in honeycomb fibers," IEEE Photonic Tech. L. 16, 2048-2050, 2004.
    [CrossRef]
  14. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

2005 (1)

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight and P.St.J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

2004 (2)

2003 (2)

2002 (1)

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quant. Electron. 33,359-371, 2001.
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

IEEE Photonic Tech. L. (1)

L. Vincetti, "Confinement losses in honeycomb fibers," IEEE Photonic Tech. L. 16, 2048-2050, 2004.
[CrossRef]

J. Opt. Fiber. Commun. Rep. (1)

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight and P.St.J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (7)

Opt. Lett. (3)

Opt. Quant. Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quant. Electron. 33,359-371, 2001.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of PCF with hybrid cladding (a), intensity distribution of the core fundamental mode (b) and of the cladding defect super mode (c).

Fig. 2
Fig. 2

Real part (a) and imaginary part (b) of the mode effective index as a function of wavelength when a complete coupling happens. Dashed curves represent the dispersion curves of core fundamental mode and cladding defect super mode respectively when there is no coupling between them at all. The insets are corresponding to intensity distribution of the coupled modes at selected wavelengths. The parameter d 1 equals to 1.36µm.

Fig. 3
Fig. 3

Real part (a) and imaginary part (b) of the mode effective index as a function of wavelength when the coupling does not happen completely. The insets are corresponding to intensity distribution of the coupled modes at selected wavelengths. The parameter d 1 equals to 1.76µm.

Fig. 4
Fig. 4

Real part (a) and imaginary part (b) of the mode effective index as a function of wavelength for different air hole diameter d 1 from 1.36µm to 1.92µm. The coupling becomes weaker and weaker as the loss difference increasing.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ dE 1 dz = i β 1 E 1 + i κ E 2 dE 2 dz = i κ E 1 + i β 2 E 2
[ β β 1 κ κ β β 2 ] [ A B ] = 0
β ± = β ave ± δ 2 + κ 2
δ 2 + κ 2 = δ i 2 + κ 2

Metrics