Abstract

Two-dimensional periodic nanostructures on ZnO crystal surface were fabricated by two-beam interference of 790 nm femtosecond laser. The long period is, as usually reported, determined by the interference pattern of two laser beams. Surprisingly, there is another short periodic nanostructures with periods of 220-270 nm embedding in the long periodic structures. We studied the periods, orientation, and the evolution of the short periodic nanostructures, and found them analogous to the self-organized nanostructures induced by single fs laser beam.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
    [CrossRef]
  2. G. Liang, W. Mao, Y. Pu, H. Zou, H. Wang, and Z. Zeng, "Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography," Appl. Phys. Lett. 89, 041902-041904 (2006).
    [CrossRef]
  3. I. Divliansky, A. Shishido, I. Khoo, T. Mayer, D. Pensa, S. Nishimura, C. Keating, and T. Mallouk, "Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe," Appl. Phys. Lett. 79, 3392-3394 (2001).
    [CrossRef]
  4. T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, "Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8," Opt. Express,  14, 7943-7953 (2006).
    [CrossRef] [PubMed]
  5. N. Lai, W. Liang, J. Lin, C. Hsu, and C. Lin, "Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique," Opt. Express,  13, 9605-9611 (2005).
    [CrossRef] [PubMed]
  6. M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  7. J. Sipe, J. Young, J. Preston, and H. Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141-1154 (1983).
    [CrossRef]
  8. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405-247408 (2003).
    [CrossRef] [PubMed]
  9. V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404-057407 (2006).
    [CrossRef] [PubMed]
  10. A. Borowiec and H. Haugen, "Subwavelength ripple formation on the surface of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003).
    [CrossRef]
  11. N. Yasumaru, K. Miyazaki, and J. Kiuchi, "Femtoseocnd-laser-induced nanostructure formed on hard thin films of TiN and DLC," Appl. Phys. A 76, 983-985 (2003).
    [CrossRef]
  12. W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, Appl. Phys. A 81, 65 (2005).
    [CrossRef]
  13. T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, Phys. Rev. B 72, 125429-125433 (2005).
    [CrossRef]
  14. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science,  292, 1897-1899 (2001).
    [CrossRef] [PubMed]
  15. P. Gao, Y. Ding, W. Mai, W. Hughes, C. Lao, and Z. Wang, "Conversion of Zinc Oxide nanobelts into superlattice-structured nanohelices," Science,  309, 1700-1704 (2005).
    [CrossRef] [PubMed]
  16. S. Juodkazis, H. Misawa, E. Vanagas, and M. Li, JLMN-J. Las. Micro/Nanoengineering 1, 253 (2006).
    [CrossRef]
  17. S. Juodkazis, E. Vanagas, and H. Misawa, Adv. Polym. Sci. 12, 122 (2007).

2007 (1)

S. Juodkazis, E. Vanagas, and H. Misawa, Adv. Polym. Sci. 12, 122 (2007).

2006 (3)

G. Liang, W. Mao, Y. Pu, H. Zou, H. Wang, and Z. Zeng, "Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography," Appl. Phys. Lett. 89, 041902-041904 (2006).
[CrossRef]

T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, "Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8," Opt. Express,  14, 7943-7953 (2006).
[CrossRef] [PubMed]

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404-057407 (2006).
[CrossRef] [PubMed]

2005 (4)

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, Appl. Phys. A 81, 65 (2005).
[CrossRef]

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, Phys. Rev. B 72, 125429-125433 (2005).
[CrossRef]

P. Gao, Y. Ding, W. Mai, W. Hughes, C. Lao, and Z. Wang, "Conversion of Zinc Oxide nanobelts into superlattice-structured nanohelices," Science,  309, 1700-1704 (2005).
[CrossRef] [PubMed]

N. Lai, W. Liang, J. Lin, C. Hsu, and C. Lin, "Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique," Opt. Express,  13, 9605-9611 (2005).
[CrossRef] [PubMed]

2003 (4)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405-247408 (2003).
[CrossRef] [PubMed]

A. Borowiec and H. Haugen, "Subwavelength ripple formation on the surface of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003).
[CrossRef]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, "Femtoseocnd-laser-induced nanostructure formed on hard thin films of TiN and DLC," Appl. Phys. A 76, 983-985 (2003).
[CrossRef]

2001 (2)

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science,  292, 1897-1899 (2001).
[CrossRef] [PubMed]

I. Divliansky, A. Shishido, I. Khoo, T. Mayer, D. Pensa, S. Nishimura, C. Keating, and T. Mallouk, "Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe," Appl. Phys. Lett. 79, 3392-3394 (2001).
[CrossRef]

2000 (1)

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

1983 (1)

J. Sipe, J. Young, J. Preston, and H. Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141-1154 (1983).
[CrossRef]

Adv. Polym. Sci. (1)

S. Juodkazis, E. Vanagas, and H. Misawa, Adv. Polym. Sci. 12, 122 (2007).

Appl. Phys. A (2)

N. Yasumaru, K. Miyazaki, and J. Kiuchi, "Femtoseocnd-laser-induced nanostructure formed on hard thin films of TiN and DLC," Appl. Phys. A 76, 983-985 (2003).
[CrossRef]

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, Appl. Phys. A 81, 65 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

G. Liang, W. Mao, Y. Pu, H. Zou, H. Wang, and Z. Zeng, "Fabrication of two-dimensional coupled photonic crystal resonator arrays by holographic lithography," Appl. Phys. Lett. 89, 041902-041904 (2006).
[CrossRef]

I. Divliansky, A. Shishido, I. Khoo, T. Mayer, D. Pensa, S. Nishimura, C. Keating, and T. Mallouk, "Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe," Appl. Phys. Lett. 79, 3392-3394 (2001).
[CrossRef]

A. Borowiec and H. Haugen, "Subwavelength ripple formation on the surface of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003).
[CrossRef]

Nature (1)

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (2)

J. Sipe, J. Young, J. Preston, and H. Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141-1154 (1983).
[CrossRef]

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, Phys. Rev. B 72, 125429-125433 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405-247408 (2003).
[CrossRef] [PubMed]

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404-057407 (2006).
[CrossRef] [PubMed]

Science (2)

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science,  292, 1897-1899 (2001).
[CrossRef] [PubMed]

P. Gao, Y. Ding, W. Mai, W. Hughes, C. Lao, and Z. Wang, "Conversion of Zinc Oxide nanobelts into superlattice-structured nanohelices," Science,  309, 1700-1704 (2005).
[CrossRef] [PubMed]

Other (1)

S. Juodkazis, H. Misawa, E. Vanagas, and M. Li, JLMN-J. Las. Micro/Nanoengineering 1, 253 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of two-beam interference used for fabrication of 2D periodic structures. HF=half-wave plate, GZ=Glan polarizer, BS=50% beam splitter, M=mirror, and L=lens.

Fig. 2.
Fig. 2.

SEM images of 2D periodic nanostructures. The total pulse energy and irradiation time were 127 uJ and 6 s in (a -c), 154 uJ and 4s in (d), and 250 uJ and 10 s in (e), respectively.

Fig. 3.
Fig. 3.

The evolution of short-periodic nanoripples with the increase of laser intensity in each strip denoted as 1, 2,…9. The total pulse energy is 153 uJ, and laser irradiation time is 6s.

Fig. 4.
Fig. 4.

SEM images of periodic nanostructures induced by 1 kHz, 130 fs laser. The pulse energies are 145 uJ in (a-c), and 130 uJ in (d). The laser irradiation time is 1 second in (a). The sample is transmitted at a speed of 0.2 mm/s in (b-d).

Metrics