Abstract

We applied a multiple-multipole method to calculate the field enhancement of discrete metal nanosphere assemblies due to plasma resonance, thus performing the first full electromagnetic simulation of a variety of nanoparticle assemblies for efficient field focusing, including the self-similar geometric series of spheres first proposed by Li, Stockman and Bergman. Our study captures electromagnetic resonance effects important for optimizing nanoparticle assemblies to achieve maximum electric field focusing. We predict optical frequency electric fields can be enhanced in gold nanoparticle assemblies in aqueous solution by the order of ~450, within a factor of 2 of that achievable in silver nanostructures. We find that both absorption and far-field scattering resonances of nanoparticle assemblies must be carefully interpreted when inferring near-field focusing properties.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (University Press, Cambridge, 2006).
  2. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Berlin, 2006).
  3. L. A. Sweatlock, S. A. Maier, and H. A. Atwater, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
    [CrossRef]
  4. K. Li. and M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef]
  5. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef]
  6. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
    [CrossRef]
  7. B. M. Reinhard, M. Siu, H. Argarwal, A. P. Alivisatos, and J. Liphardt, "Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles," Nano Lett. 5, 2246-2252 (2005).
    [CrossRef]
  8. F. Aldaye and H. F. Sleiman, "Dynamic DNA templates for discrete gold nanoparticles assemblies: Control of geometry, modularity, write/erase and structural switching," J. Am. Chem. Soc. 129, 4130-4131 (2007).
    [CrossRef]
  9. Y. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995).
  10. D. W. Mackowski, "Analysis of radiative scattering for multiple sphere configurations," Proc. R. Soc. London Ser. A 433, 599-614 (1991).
  11. J. H. Bruning and Y. T. Lo, "Multiple scattering of EM waves by spheres Part I - Multipole Expansion and Ray-Optical Solutions," IEEE Tran.Antennas Propag. AP-19, 378-390 (1971).
  12. Y. Xu, "Calculation of the addition coefficients in electromagnetic multisphere-scattering theory," J. Comput. Phys. 127, 285-298 (1996).
    [CrossRef]
  13. F. J. Garcia de Abajo, "Multiple scattering of radiation in clusters of dielectrics," Phys. Rev. B 60, 6086-6102 (1999).
    [CrossRef]
  14. G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mat. Sci. Eng. C 27, 1347-1350 (2007).
    [CrossRef]
  15. H. Xu, "Calculation of the near field of aggregates of arbitrary spheres," J. Opt. Soc. Am. A 21, 804-809 (2004).
    [CrossRef]
  16. R.-L. Chern, X.-X. Liu and C.-C. Chang, "Particle plasmons of metal nanospheres: Application of multiple scattering approach," Phys. Rev. E 76, 016609 (2007).
    [CrossRef]
  17. B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, "Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches," Nanotechnology 17, 1437-1445 (2006).
    [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  20. G. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th. ed., (Academic, Orlando, 2005).
  21. D. W. Mackowski, "Calculation of total cross sections of multiple-sphere clusters," J. Opt. Soc. Am. A 11, 2851-2861 (1994).
  22. A. R. Edmond, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).
  23. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  24. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef]
  25. F. Wang and Y. Ron Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006).
    [CrossRef]
  26. I. H. El-Sayed, X. Huang and M. A. El-Sayed, "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129-135 (2006).
  27. E. Prodan, C. Radloff, N. J. Halas and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419 - 422 (2003).
    [CrossRef]
  28. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef]
  29. B. J. Messinger, K. U. von Raben, R. K. Chang and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
    [CrossRef]

2007 (4)

F. Aldaye and H. F. Sleiman, "Dynamic DNA templates for discrete gold nanoparticles assemblies: Control of geometry, modularity, write/erase and structural switching," J. Am. Chem. Soc. 129, 4130-4131 (2007).
[CrossRef]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mat. Sci. Eng. C 27, 1347-1350 (2007).
[CrossRef]

R.-L. Chern, X.-X. Liu and C.-C. Chang, "Particle plasmons of metal nanospheres: Application of multiple scattering approach," Phys. Rev. E 76, 016609 (2007).
[CrossRef]

2006 (3)

B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, "Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches," Nanotechnology 17, 1437-1445 (2006).
[CrossRef]

F. Wang and Y. Ron Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef]

I. H. El-Sayed, X. Huang and M. A. El-Sayed, "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129-135 (2006).

2005 (2)

B. M. Reinhard, M. Siu, H. Argarwal, A. P. Alivisatos, and J. Liphardt, "Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles," Nano Lett. 5, 2246-2252 (2005).
[CrossRef]

L. A. Sweatlock, S. A. Maier, and H. A. Atwater, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

2004 (2)

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

H. Xu, "Calculation of the near field of aggregates of arbitrary spheres," J. Opt. Soc. Am. A 21, 804-809 (2004).
[CrossRef]

2003 (3)

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

K. Li. and M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419 - 422 (2003).
[CrossRef]

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

1999 (1)

F. J. Garcia de Abajo, "Multiple scattering of radiation in clusters of dielectrics," Phys. Rev. B 60, 6086-6102 (1999).
[CrossRef]

1996 (1)

Y. Xu, "Calculation of the addition coefficients in electromagnetic multisphere-scattering theory," J. Comput. Phys. 127, 285-298 (1996).
[CrossRef]

1995 (1)

1994 (1)

1991 (1)

D. W. Mackowski, "Analysis of radiative scattering for multiple sphere configurations," Proc. R. Soc. London Ser. A 433, 599-614 (1991).

1981 (1)

B. J. Messinger, K. U. von Raben, R. K. Chang and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1971 (1)

J. H. Bruning and Y. T. Lo, "Multiple scattering of EM waves by spheres Part I - Multipole Expansion and Ray-Optical Solutions," IEEE Tran.Antennas Propag. AP-19, 378-390 (1971).

Antennas Propag. (1)

J. H. Bruning and Y. T. Lo, "Multiple scattering of EM waves by spheres Part I - Multipole Expansion and Ray-Optical Solutions," IEEE Tran.Antennas Propag. AP-19, 378-390 (1971).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003).
[CrossRef]

Cancer Lett. (1)

I. H. El-Sayed, X. Huang and M. A. El-Sayed, "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129-135 (2006).

J. Am. Chem. Soc. (1)

F. Aldaye and H. F. Sleiman, "Dynamic DNA templates for discrete gold nanoparticles assemblies: Control of geometry, modularity, write/erase and structural switching," J. Am. Chem. Soc. 129, 4130-4131 (2007).
[CrossRef]

J. Comput. Phys. (1)

Y. Xu, "Calculation of the addition coefficients in electromagnetic multisphere-scattering theory," J. Comput. Phys. 127, 285-298 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

Mat. Sci. Eng. C (1)

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mat. Sci. Eng. C 27, 1347-1350 (2007).
[CrossRef]

Nano Lett. (1)

B. M. Reinhard, M. Siu, H. Argarwal, A. P. Alivisatos, and J. Liphardt, "Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles," Nano Lett. 5, 2246-2252 (2005).
[CrossRef]

Nanotechnology (1)

B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, "Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches," Nanotechnology 17, 1437-1445 (2006).
[CrossRef]

Phys. Rev. B (4)

F. J. Garcia de Abajo, "Multiple scattering of radiation in clusters of dielectrics," Phys. Rev. B 60, 6086-6102 (1999).
[CrossRef]

L. A. Sweatlock, S. A. Maier, and H. A. Atwater, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

B. J. Messinger, K. U. von Raben, R. K. Chang and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. E (1)

R.-L. Chern, X.-X. Liu and C.-C. Chang, "Particle plasmons of metal nanospheres: Application of multiple scattering approach," Phys. Rev. E 76, 016609 (2007).
[CrossRef]

Phys. Rev. Lett. (5)

K. Li. and M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef]

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

F. Wang and Y. Ron Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

D. W. Mackowski, "Analysis of radiative scattering for multiple sphere configurations," Proc. R. Soc. London Ser. A 433, 599-614 (1991).

Science (1)

E. Prodan, C. Radloff, N. J. Halas and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419 - 422 (2003).
[CrossRef]

Other (6)

L. Novotny and B. Hecht, Principles of Nano-Optics (University Press, Cambridge, 2006).

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Berlin, 2006).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

G. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th. ed., (Academic, Orlando, 2005).

A. R. Edmond, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics