Abstract

Enhanced near-field distributions around a single gold nanosphere are imaged using scattering-type apertureless near field scanning optical microscopy (ANSOM) at a wavelength of 632.8 nm. For the first time, polarization-selected ANSOM images are obtained that show both the transverse (perpendicular to the tip axis) and the longitudinal (parallel to the tip axis) vector components of the near-field in a phase sensitive manner. A model calculation using a Green’s dyadic propagator method successfully reproduces the features of the observed intensity and phase images, providing an interpretation of the ANSOM images. The results open up the possibility that the field vector directions as well as the field magnitude around plasmonic nanostructures and nanodevices can be directly mapped using the ANSOM technique.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1986).
  2. K. Kneipp, H. Kneipp, and J. J. Kneipp, "Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells," Acc. Chem. Res. 39, 443-450 (2006).
    [CrossRef] [PubMed]
  3. K. A. Willets and R. P. van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006).
    [CrossRef]
  4. H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, "Creating focused plasmons by noncollinear phasematching on functional gratings," Nano Lett. 5, 2144-2148 (2005).
    [CrossRef] [PubMed]
  5. R. Hillenbrand, F. Keilmann, P. Hanarp, and D. S. Sutherland, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
    [CrossRef]
  6. R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
    [CrossRef]
  7. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 081103 (2005).
    [CrossRef]
  8. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111, 1207-1212 (2007).
    [CrossRef]
  9. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  10. Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006).
    [CrossRef] [PubMed]
  11. Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Phys. Chem. B 109, 8503-8508 (2005).
    [CrossRef]
  12. L. Aigouy, A. Lahrech, S. Gresillon, H. Cory, A. C. Boccara, and J. C. Rivoal, " Polarization effects in apertureless scanning near-field optical microscopy: an experimental study," Opt. Lett. 24, 187-189 (1999).
    [CrossRef]
  13. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 0955034 (2003).
    [CrossRef]
  14. Z. H. Kim and S. R. Leone, " Nanometer-scale dielectric imaging of semiconductor nanoparticles: Size-dependent dipolar coupling and contrast reversal," Nano Lett. 7, 2258-2262 (2007).
    [CrossRef] [PubMed]
  15. L. Stebounova, B. B. Akhremitchev, and G. C. Walker, "Enhancement of the weak scattered signal in apertureless near-field scanning infrared microscopy," Rev. Sci. Instrum. 74, 3670-3674 (2003).
    [CrossRef]
  16. K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2006).
    [CrossRef]
  17. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
    [CrossRef] [PubMed]
  18. D. Haefliger, J. M. Plitzko, and R. Hillenbrand, "Contrast and scattering efficiency of scattering-type near-field optical probes," Appl. Phys. Lett. 85, 4466-4468 (2004).
    [CrossRef]
  19. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  20. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
    [CrossRef]

2007 (3)

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111, 1207-1212 (2007).
[CrossRef]

Z. H. Kim and S. R. Leone, " Nanometer-scale dielectric imaging of semiconductor nanoparticles: Size-dependent dipolar coupling and contrast reversal," Nano Lett. 7, 2258-2262 (2007).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

2006 (5)

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2006).
[CrossRef]

Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, and J. J. Kneipp, "Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells," Acc. Chem. Res. 39, 443-450 (2006).
[CrossRef] [PubMed]

K. A. Willets and R. P. van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006).
[CrossRef]

2005 (3)

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, "Creating focused plasmons by noncollinear phasematching on functional gratings," Nano Lett. 5, 2144-2148 (2005).
[CrossRef] [PubMed]

Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Phys. Chem. B 109, 8503-8508 (2005).
[CrossRef]

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 081103 (2005).
[CrossRef]

2004 (1)

D. Haefliger, J. M. Plitzko, and R. Hillenbrand, "Contrast and scattering efficiency of scattering-type near-field optical probes," Appl. Phys. Lett. 85, 4466-4468 (2004).
[CrossRef]

2003 (3)

L. Stebounova, B. B. Akhremitchev, and G. C. Walker, "Enhancement of the weak scattered signal in apertureless near-field scanning infrared microscopy," Rev. Sci. Instrum. 74, 3670-3674 (2003).
[CrossRef]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 0955034 (2003).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, and D. S. Sutherland, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

2001 (2)

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

1999 (1)

Acc. Chem. Res. (1)

K. Kneipp, H. Kneipp, and J. J. Kneipp, "Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells," Acc. Chem. Res. 39, 443-450 (2006).
[CrossRef] [PubMed]

Ann. Rev. Phys. Chem. (1)

K. A. Willets and R. P. van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006).
[CrossRef]

Appl. Phys. B (1)

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 081103 (2005).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, and D. S. Sutherland, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

D. Haefliger, J. M. Plitzko, and R. Hillenbrand, "Contrast and scattering efficiency of scattering-type near-field optical probes," Appl. Phys. Lett. 85, 4466-4468 (2004).
[CrossRef]

J. Phys. Chem. B (2)

Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006).
[CrossRef] [PubMed]

Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Phys. Chem. B 109, 8503-8508 (2005).
[CrossRef]

J. Phys. Chem. C (1)

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111, 1207-1212 (2007).
[CrossRef]

Nano Lett. (2)

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, "Creating focused plasmons by noncollinear phasematching on functional gratings," Nano Lett. 5, 2144-2148 (2005).
[CrossRef] [PubMed]

Z. H. Kim and S. R. Leone, " Nanometer-scale dielectric imaging of semiconductor nanoparticles: Size-dependent dipolar coupling and contrast reversal," Nano Lett. 7, 2258-2262 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 0955034 (2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

L. Stebounova, B. B. Akhremitchev, and G. C. Walker, "Enhancement of the weak scattered signal in apertureless near-field scanning infrared microscopy," Rev. Sci. Instrum. 74, 3670-3674 (2003).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1986).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of ANSOM instrument and coordinate system used throughout this work. The unprimed coordinate (sample frame) and primed coordinate (polarization frame) are rotated by 30°. PZT=piezo transducer, M=mirror, BS=50/50 beam splitter, PD=photodiode, QWP=quarter-wave plate, Eref=reference field and its polarization, Escat=back-scattered field.

Fig. 2.
Fig. 2.

ANSOM intensity (I 3) approach curves, collected at the 3rd harmonic of the tip oscillation frequency with the tip placed above a gold nanosphere. (a) Detector polarization at θ=90° (Z), and (b) detector polarization θ=0° (Y).

Fig. 3.
Fig. 3.

The normalized ANSOM intensity (a, c, and e), ANSOM phase (b, d, f), and topography (g) images of 50 nm a gold nanosphere on Si substrate, obtained with detection angles θ=90° (a, b), θ=0° (c, d), and θ=45° (e, f). See also Fig. 1 for polarization coordinates. The bars on the images represent the same 80 nm length scales. Also shown is the sample coordinate system.

Fig. 4.
Fig. 4.

Simulated electric field (a, d, and g), ANSOM intensity (b, e, and h) and ANSOM phase (c, f, i) images of a gold nanosphere (40 nm radius) on Si substrate, obtained with detection polarization angles Z (θ=90°; a, b, and c), Y(θ=0°; d, e, and f), and YZ (θ=45°; g, h, and i). See also Fig. 1 for polarization coordinates. The simulated area corresponds to 200 nm×200 nm. The simulated intensities (a, c, and e) are normalized to show the details of the images. The color scale for (f) is -100° to 100°. The dashed lines in (a), (d), and (e) indicate the center position of the gold nanosphere. (j) Expected field distributions as seen in XZ- and YZ- planes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S n 0 = E scat , n E ff cos Φ ,
S n = E scat , n E ff cos Φ + E scat , n E ref cos ( δ n + Γ ) E scat , n E ref cos ( δ n + Γ )
I n = E scat , n 2 = [ S n ( Γ 1 ) ] 2 + [ S n ( Γ 1 + π 2 ) ] 2 and δ n = tan 1 [ S n ( Γ 1 ) S n ( Γ 1 + π 2 ) ] .
E n , j ( x , y , z ) = I n , j ( x , y , z ) e i δ n , j ( x , y , z ) = 1 2 π 0 2 π E loc , j ( x , y , z + A ( z ) cos ϕ ) e in ϕ j d ϕ
E n , j ( x , y , z 0 ) n z n E loc , j ( x , y , z ) z = z 0 .
E loc , j ( x , y , z ) Q j ( x , y ) Z j ( z )
E n , j ( x , y , z 0 ) Q j ( x , y ) n z n Z j ( z ) z = z 0 Q j ( x , y ) .

Metrics