Abstract

We present a practical method for reconstructing the optical system of the human eye from off-axis wavefront measurements. A retinal beacon formed at different locations on the retina allows probing the optical structure of the eye by the outgoing beams that exit the eye through the dilated pupil. A Shack-Hartmann aberrometer measures the amount of wave aberrations in each beam at the exit pupil plane. Wavefront data obtained at different oblique directions is used for tomographic reconstruction by optimizing a generic eye model with reverse ray-tracing. The multi-configuration system is constructed by tracing pre-aberrated beams backwards from each direction through the exit pupil into the optical system of the aberrometer followed by the generic eye model. Matching all wave aberrations measured at each field point is equivalent to minimizing the size of the beacon spots on the retina. The main benefit of having a personalized eye model is the ability to identify the origin of the ocular aberrations and to find the optimal way for their correction.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
    [PubMed]
  2. L. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," in Vision Science and its Applications, OSA Technical Digest, paper SuC1 (2000).
    [PubMed]
  3. J. Stone, P. H. Hu, S. P. Mills, and S. Ma, "Anisoplanatic effects in finite-aperture optical systems," J. Opt. Soc. Am. A 11, 347-357 (1994).
    [CrossRef] [PubMed]
  4. M. Di Jorio, "The general theory of isoplanatism for finite aperture and field," J. Opt. Soc. Am. 39, 305-319 (1949).
    [CrossRef] [PubMed]
  5. A. V. Goncharov and C. Dainty, "Wide-Field Schematic Eye Model with Gradient-Index Lens," J. Opt. Soc. Am. A 24, 2157-2174 (2007).
    [CrossRef] [PubMed]
  6. F. Rigaut, B. L. Ellerbroek, and M. J. Northcott, "Comparison of curvature-based and Shack Hartmann-based adaptive optics for the Gemini telescope," Appl. Opt. 36, 2856-2868 (1997).
    [CrossRef] [PubMed]
  7. M. Nicolle, T. Fusco, G. Rousset, and V. Michau, "Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics," Opt. Lett. 29, 2743-2745 (2004).
    [CrossRef] [PubMed]
  8. A. V. Goncharov, J. C. Dainty, and S. Esposito, "Compact multireference wavefront sensor design," Opt. Lett. 30, 2721-2723 (2005).
    [CrossRef] [PubMed]
  9. T. W. Nicholls, G. D. Boreman, and J. C. Dainty, "Use of a Shack-Hartmann wave-front sensor to measure deviations from a Kolmogorov phase spectrum," Opt. Lett. 20, 2460-2462 (1995).
    [CrossRef] [PubMed]
  10. T. M. Jeong, M. Menon, and G. Yoon, "Measurement of wave-front aberration in soft contact lenses by use of a Shack-Hartmann wave-front sensor," Appl. Opt. 44, 4523-4527 (2005).
    [CrossRef] [PubMed]
  11. J. -S. Lee, H. -S. Yang, and J. -W. Hahn, "Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source," Appl. Opt. 46, 1411-1415 (2007).
    [CrossRef] [PubMed]
  12. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef] [PubMed]
  13. T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998).
    [CrossRef] [PubMed]
  14. R. G. Lane and M. Tallon, "Wavefront reconstruction using a Shack-Hartmann sensor," Appl. Opt. 31, 6902-6908 (1992).
    [CrossRef] [PubMed]
  15. R. C. Cannon, "Global wave-front reconstruction using Shack-Hartmann sensors," J. Opt. Soc. Am. A 12, 2031-2039 (1995).
    [CrossRef] [PubMed]
  16. M. T. Sheehan, A. V. Goncharov, V. M. O'Dwyer, V. Toal, and C. Dainty, "Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field," Opt. Express 15, 7367-7380 (2007).
    [CrossRef] [PubMed]
  17. J. Lee, R. V. Shack, and M. R. Descour, "Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor," Appl. Opt. 44, 4838-4845 (2005).
    [CrossRef] [PubMed]
  18. R. Navarro, L. González, and J. L. Hernández-Matamoros, "On the prediction of optical aberrations by personalized eye models," Optom. Vision Sci. 83, 371-381 (2006).
    [CrossRef] [PubMed]
  19. M. Ye, X. X. Zhang, L. N. Thibos, and A. Bradley,"A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye," Invest. Ophthalmol. Visual Sci. 34, 777 (1993).
    [PubMed]
  20. W. Lotmar, "Theoretical eye model with aspherics," J. Opt. Soc. Am. 61, 1522-1529 (1971).
    [CrossRef] [PubMed]
  21. A. C. Kooijman, "Light distribution on the retina of a wide-angle theoretical eye," J. Opt. Soc. Am. 73, 1544-1550 (1983).
  22. J. W. Blaker, "Toward an adaptive model of the human eye," J. Opt. Soc. Am. 70, 220-223 (1980).
    [CrossRef] [PubMed]
  23. R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985).
    [CrossRef] [PubMed]
  24. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881-1891 (1999).
    [CrossRef] [PubMed]
  25. G. Smith, D. A. Atchison, and B. K. Pierscionek, "Modeling the power of the aging human eye," J. Opt. Soc. Am. A 9, 2111-2117 (1992).
    [CrossRef] [PubMed]
  26. I. H. Al-Ahdali and M. A. El-Messiery, "Examination of the effect of the fibrous structure of a lens on the optical characteristics of the human eye: a computer-simulated model," Appl. Opt. 34, 5738-5745 (1995).
    [CrossRef] [PubMed]
  27. H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
    [CrossRef] [PubMed]
  28. S. Barbero, "Refractive power of a multilayer rotationally symmetric model of the human cornea and tear film," J. Opt. Soc. Am. A 23, 1578-1585 (2006).
    [CrossRef]
  29. J. A. Sakamoto, H. H. Barrett, and A. V. Goncharov, "Inverse optical design of the human eye using likelihood methods and wavefront sensing," Opt. Express 16, 304-314 (2008).
    [CrossRef] [PubMed]
  30. L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vis. Sci. 82, 298-306 (2005).
    [CrossRef] [PubMed]
  31. R. Navarro, L. González, and J. L. Hernández, "Optics of the average normal cornea from general and canonical representations of its surface topography," J. Opt. Soc. Am. A 23, 219-232 (2006).
    [CrossRef] [PubMed]
  32. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, "Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations," J. Vision. 4, 288 (2004), http://journalofvision.org/4/4/5/.
    [CrossRef] [PubMed]
  33. L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, "Effect of sampling on real ocular aberration measurements," J. Opt. Soc. Am. A 24, 2783-2796 (2007).
    [CrossRef] [PubMed]
  34. B. Pierscionek, R. J. Green, and S. G. Dolgobrodov, "Retinal images seen through a cataractous lens modeled as a phase-aberrating screen," J. Opt. Soc. Am. A 19, 1491-1500 (2002).
    [CrossRef] [PubMed]
  35. R. Navarro, F. Palos, and L. González, "Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses," J. Opt. Soc. Am. A 24, 2175-2185 (2007).
    [CrossRef]
  36. A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov"Anisoplanatism in adaptive compensation of human eye aberrations," in Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein eds., Proc SPIE 5572, 330-339 (2004).
    [CrossRef]
  37. J. Tabernero, A. Benito, E. Alcón, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A 24, 3274-3283 (2007).
    [CrossRef]
  38. S. Bará and R. Navarro, "Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs," J. Opt. Soc. Am. A 20, 1-10 (2003).
    [CrossRef]
  39. P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, "Multiconjugate adaptive optics applied to an anatomically accurate human eye model," Opt. Express 14, 8019-8030 (2006).
    [CrossRef] [PubMed]
  40. B. Tan, Y. -L. Chen, K. Baker, J. W. Lewis, T. Swartz, Y. Jiang, and M. Wang, "Simulation of realistic retinoscopic measurement," Opt. Express 15, 2753-2761 (2007).
    [CrossRef] [PubMed]
  41. A. Roorda, M. C. W. Campbell, and W. R. Bobier, "Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye," J. Opt. Soc. Am. A 12, 1647-1656 (1995).
    [CrossRef] [PubMed]
  42. Y. -L. Chen, B. Tan, and J. Lewis, "Simulation of eccentric photorefraction images," Opt. Express 11, 1628-1642 (2003).
    [CrossRef] [PubMed]
  43. P. A. Piers, N. E. Sverker Norrby, and U. Mester, "Eye models for the prediction of contrast vision in patients with new intraocular lens designs," Opt. Lett. 29, 733-735 (2004).
    [CrossRef] [PubMed]
  44. J. Tabernero, P. Piers, and P. Artal, "Intraocular lens to correct corneal coma," Opt. Lett. 32, 406-408 (2007).
    [CrossRef] [PubMed]
  45. D. A. Atchison, "Aberrations associated with rigid contact lenses," J. Opt. Soc. Am. A 12, 2267-2273 (1995).
    [CrossRef] [PubMed]
  46. H. H. Dietze and M. J. Cox, "Correcting ocular spherical aberration with soft contact lenses," J. Opt. Soc. Am. A 21, 473-485 (2004).
    [CrossRef] [PubMed]
  47. D. Vazquez, E. Acosta, G. Smith, and L. Garner, "Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens," J. Opt. Soc. Am. A 23, 2551-2565 (2006).
    [CrossRef]
  48. B. A. Moffat, D. A. Atchison, and J. M. Pope, "Aged-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance microimaging in vitro," Vision Res. 42, 1683-1693 (2002).
    [CrossRef] [PubMed]
  49. S. A. Burns, S. Marcos, A. E. Elsner, and S. Bara, "Contrast improvement of confocal retinal imaging by use of phase-correcting plates," Opt. Lett. 27, 400-402 (2002).
    [CrossRef]
  50. J. Arines and S. Bara, "Hybrid technique for high resolution imaging of the eye fundus," Opt. Express 11, 761-766 (2003).
    [CrossRef] [PubMed]
  51. J. M. Bueno, J. J. Hunter, C. J. Cookson, M. L. Kisilak, and M. C. W. Campbell, "Improved scanning laser fundus imaging using polarimetry," J. Opt. Soc. Am. A 24, 1337-1348 (2007).
    [CrossRef]
  52. L. E. Marchese, R. Munger, and D. Priest, "Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?," J. Opt. Soc. Am. A 22, 1471-1481 (2005).
    [CrossRef]

2008 (1)

2007 (9)

J. Tabernero, P. Piers, and P. Artal, "Intraocular lens to correct corneal coma," Opt. Lett. 32, 406-408 (2007).
[CrossRef] [PubMed]

J. -S. Lee, H. -S. Yang, and J. -W. Hahn, "Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source," Appl. Opt. 46, 1411-1415 (2007).
[CrossRef] [PubMed]

B. Tan, Y. -L. Chen, K. Baker, J. W. Lewis, T. Swartz, Y. Jiang, and M. Wang, "Simulation of realistic retinoscopic measurement," Opt. Express 15, 2753-2761 (2007).
[CrossRef] [PubMed]

J. M. Bueno, J. J. Hunter, C. J. Cookson, M. L. Kisilak, and M. C. W. Campbell, "Improved scanning laser fundus imaging using polarimetry," J. Opt. Soc. Am. A 24, 1337-1348 (2007).
[CrossRef]

M. T. Sheehan, A. V. Goncharov, V. M. O'Dwyer, V. Toal, and C. Dainty, "Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field," Opt. Express 15, 7367-7380 (2007).
[CrossRef] [PubMed]

A. V. Goncharov and C. Dainty, "Wide-Field Schematic Eye Model with Gradient-Index Lens," J. Opt. Soc. Am. A 24, 2157-2174 (2007).
[CrossRef] [PubMed]

R. Navarro, F. Palos, and L. González, "Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses," J. Opt. Soc. Am. A 24, 2175-2185 (2007).
[CrossRef]

L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, "Effect of sampling on real ocular aberration measurements," J. Opt. Soc. Am. A 24, 2783-2796 (2007).
[CrossRef] [PubMed]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A 24, 3274-3283 (2007).
[CrossRef]

2006 (5)

2005 (5)

2004 (5)

H. H. Dietze and M. J. Cox, "Correcting ocular spherical aberration with soft contact lenses," J. Opt. Soc. Am. A 21, 473-485 (2004).
[CrossRef] [PubMed]

P. A. Piers, N. E. Sverker Norrby, and U. Mester, "Eye models for the prediction of contrast vision in patients with new intraocular lens designs," Opt. Lett. 29, 733-735 (2004).
[CrossRef] [PubMed]

M. Nicolle, T. Fusco, G. Rousset, and V. Michau, "Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics," Opt. Lett. 29, 2743-2745 (2004).
[CrossRef] [PubMed]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, "Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations," J. Vision. 4, 288 (2004), http://journalofvision.org/4/4/5/.
[CrossRef] [PubMed]

A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov"Anisoplanatism in adaptive compensation of human eye aberrations," in Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein eds., Proc SPIE 5572, 330-339 (2004).
[CrossRef]

2003 (3)

2002 (3)

1999 (1)

1998 (1)

1997 (2)

1995 (5)

1994 (2)

1993 (1)

M. Ye, X. X. Zhang, L. N. Thibos, and A. Bradley,"A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye," Invest. Ophthalmol. Visual Sci. 34, 777 (1993).
[PubMed]

1992 (2)

1985 (1)

1983 (1)

1980 (1)

1971 (1)

1949 (1)

Appl. Opt. (6)

Invest. Ophthalmol. Visual Sci. (1)

M. Ye, X. X. Zhang, L. N. Thibos, and A. Bradley,"A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye," Invest. Ophthalmol. Visual Sci. 34, 777 (1993).
[PubMed]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (22)

R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985).
[CrossRef] [PubMed]

J. Stone, P. H. Hu, S. P. Mills, and S. Ma, "Anisoplanatic effects in finite-aperture optical systems," J. Opt. Soc. Am. A 11, 347-357 (1994).
[CrossRef] [PubMed]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
[CrossRef] [PubMed]

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881-1891 (1999).
[CrossRef] [PubMed]

T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998).
[CrossRef] [PubMed]

H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
[CrossRef] [PubMed]

A. Roorda, M. C. W. Campbell, and W. R. Bobier, "Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye," J. Opt. Soc. Am. A 12, 1647-1656 (1995).
[CrossRef] [PubMed]

R. C. Cannon, "Global wave-front reconstruction using Shack-Hartmann sensors," J. Opt. Soc. Am. A 12, 2031-2039 (1995).
[CrossRef] [PubMed]

D. A. Atchison, "Aberrations associated with rigid contact lenses," J. Opt. Soc. Am. A 12, 2267-2273 (1995).
[CrossRef] [PubMed]

R. Navarro, L. González, and J. L. Hernández, "Optics of the average normal cornea from general and canonical representations of its surface topography," J. Opt. Soc. Am. A 23, 219-232 (2006).
[CrossRef] [PubMed]

S. Barbero, "Refractive power of a multilayer rotationally symmetric model of the human cornea and tear film," J. Opt. Soc. Am. A 23, 1578-1585 (2006).
[CrossRef]

L. E. Marchese, R. Munger, and D. Priest, "Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?," J. Opt. Soc. Am. A 22, 1471-1481 (2005).
[CrossRef]

H. H. Dietze and M. J. Cox, "Correcting ocular spherical aberration with soft contact lenses," J. Opt. Soc. Am. A 21, 473-485 (2004).
[CrossRef] [PubMed]

G. Smith, D. A. Atchison, and B. K. Pierscionek, "Modeling the power of the aging human eye," J. Opt. Soc. Am. A 9, 2111-2117 (1992).
[CrossRef] [PubMed]

B. Pierscionek, R. J. Green, and S. G. Dolgobrodov, "Retinal images seen through a cataractous lens modeled as a phase-aberrating screen," J. Opt. Soc. Am. A 19, 1491-1500 (2002).
[CrossRef] [PubMed]

S. Bará and R. Navarro, "Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs," J. Opt. Soc. Am. A 20, 1-10 (2003).
[CrossRef]

D. Vazquez, E. Acosta, G. Smith, and L. Garner, "Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens," J. Opt. Soc. Am. A 23, 2551-2565 (2006).
[CrossRef]

A. V. Goncharov and C. Dainty, "Wide-Field Schematic Eye Model with Gradient-Index Lens," J. Opt. Soc. Am. A 24, 2157-2174 (2007).
[CrossRef] [PubMed]

R. Navarro, F. Palos, and L. González, "Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses," J. Opt. Soc. Am. A 24, 2175-2185 (2007).
[CrossRef]

L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, "Effect of sampling on real ocular aberration measurements," J. Opt. Soc. Am. A 24, 2783-2796 (2007).
[CrossRef] [PubMed]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A 24, 3274-3283 (2007).
[CrossRef]

J. M. Bueno, J. J. Hunter, C. J. Cookson, M. L. Kisilak, and M. C. W. Campbell, "Improved scanning laser fundus imaging using polarimetry," J. Opt. Soc. Am. A 24, 1337-1348 (2007).
[CrossRef]

J. Vision. (1)

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, "Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations," J. Vision. 4, 288 (2004), http://journalofvision.org/4/4/5/.
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Optom. Vis. Sci. (1)

L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vis. Sci. 82, 298-306 (2005).
[CrossRef] [PubMed]

Optom. Vision Sci. (1)

R. Navarro, L. González, and J. L. Hernández-Matamoros, "On the prediction of optical aberrations by personalized eye models," Optom. Vision Sci. 83, 371-381 (2006).
[CrossRef] [PubMed]

Proc SPIE (1)

A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov"Anisoplanatism in adaptive compensation of human eye aberrations," in Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein eds., Proc SPIE 5572, 330-339 (2004).
[CrossRef]

Vision Res. (1)

B. A. Moffat, D. A. Atchison, and J. M. Pope, "Aged-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance microimaging in vitro," Vision Res. 42, 1683-1693 (2002).
[CrossRef] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
[PubMed]

L. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," in Vision Science and its Applications, OSA Technical Digest, paper SuC1 (2000).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The optical layout of the aberrometer: 1 – laser diode, 2 – pinhole, 3 – focusing lens, 4 – visual target, 5 – collimating lens, 6 – human eye, 7 – pellicle beamsplitter, 8 – Badal focusing lens, 9 – Badal pick-off mirrors, 10 – Badal collimating lens, 11,12 – pupil re-imaging lenses, 13 – exit pupil (lenslet array).

Fig. 2.
Fig. 2.

Schematic optical layout of the human eye with five probing beams and corresponding phase maps of measured wave aberrations shown in color. The angle between A and B points is 10 degrees.

Fig. 3.
Fig. 3.

The principle of reconstructing the optical system of the eye with reverse ray tracing.

Fig. 4.
Fig. 4.

The optical layout of the generic eye model with a gradient index lens made in Zemax (a), the fixation points in the central visual field used for eye modeling (outer and inner circles are 10 and 6 deg in diameter, respectively).

Fig. 5.
Fig. 5.

The GRIN profiles in the meridional plane (a) and the peak plane (b) for the generic model (GM) and personalized model (PM).

Fig. 6.
Fig. 6.

Zernike coefficients (mm) of the anterior corneal surface (a) and its topographical map (b).

Fig. 7.
Fig. 7.

The optical layout of the personalized eye with the red, blue and green beams traced from the left, central and right field points, respectively, in the horizontal meridian. The dashed line is the optical axis of the crystalline lens.

Fig. 8.
Fig. 8.

Wavefront aberration maps measured by the aberrometer (a) and predicted by the reconstructed eye model (b) in the horizontal meridian. RMS difference for each pair of maps is shown below in microns.

Fig. 9.
Fig. 9.

Aberration maps predicted by the eye model (a) and the model after defocus correction (b).

Tables (1)

Tables Icon

Table 1. Dimensions and refractive indices of the unaccommodated generic eye model

Metrics