Abstract

We describe an optical microscope system whose focal setting can be changed quickly without moving the objective lens or specimen. Using this system, diffraction limited images can be acquired from a wide range of focal settings without introducing optical aberrations that degrade image quality. We combine this system with a real time Nipkow disc based confocal microscope so as to permit the acquisition of extended depth of field images directly in a single frame of the CCD camera. We also demonstrate a simple modification that enables extended depth of field images to be acquired from different angles of perspective, where the angle can be changed over a continuous range by the user in real-time.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Single-shot depth-section imaging through chromatic slit-scan confocal microscopy

Paul C. Lin, Pang-Chen Sun, Lijun Zhu, and Yeshaiahu Fainman
Appl. Opt. 37(28) 6764-6770 (1998)

High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks

Takeo Tanaami, Shinya Otsuki, Nobuhiro Tomosada, Yasuhito Kosugi, Mizuho Shimizu, and Hideyuki Ishida
Appl. Opt. 41(22) 4704-4708 (2002)

Aberration-free optical refocusing in high numerical aperture microscopy

Edward J. Botcherby, Rimas Juskaitis, Martin J. Booth, and Tony Wilson
Opt. Lett. 32(14) 2007-2009 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” Academic Press, London, (1984).
  2. M. A. A. Neil, R. Juškaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245–247 (2000).
    [Crossref]
  3. E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Comm. 268, 253–260 (2006).
    [Crossref]
  4. N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A: Pure Appl. Opt. 5, S157–S163 (2003).
    [Crossref]
  5. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
    [Crossref] [PubMed]
  6. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 6th edition, 1983).
  7. E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32, 2007–2009 (2007).
    [Crossref] [PubMed]
  8. E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Comm. 281, 880–887 (2008).
    [Crossref]

2008 (1)

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Comm. 281, 880–887 (2008).
[Crossref]

2007 (1)

2006 (1)

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Comm. 268, 253–260 (2006).
[Crossref]

2003 (1)

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A: Pure Appl. Opt. 5, S157–S163 (2003).
[Crossref]

2000 (1)

1995 (1)

Booth, M.

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Comm. 281, 880–887 (2008).
[Crossref]

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32, 2007–2009 (2007).
[Crossref] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 6th edition, 1983).

Botcherby, E.

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Comm. 281, 880–887 (2008).
[Crossref]

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32, 2007–2009 (2007).
[Crossref] [PubMed]

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Comm. 268, 253–260 (2006).
[Crossref]

Cathey, W. T.

Chi, W.

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A: Pure Appl. Opt. 5, S157–S163 (2003).
[Crossref]

Dowski, E. R.

George, N.

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A: Pure Appl. Opt. 5, S157–S163 (2003).
[Crossref]

Juškaitis, R.

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Comm. 281, 880–887 (2008).
[Crossref]

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32, 2007–2009 (2007).
[Crossref] [PubMed]

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Comm. 268, 253–260 (2006).
[Crossref]

M. A. A. Neil, R. Juškaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245–247 (2000).
[Crossref]

Laczik, Z. J.

Neil, M. A. A.

Sarafis, V.

Sheppard, C. J. R.

T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” Academic Press, London, (1984).

Wilson, T.

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Comm. 281, 880–887 (2008).
[Crossref]

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32, 2007–2009 (2007).
[Crossref] [PubMed]

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Comm. 268, 253–260 (2006).
[Crossref]

M. A. A. Neil, R. Juškaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245–247 (2000).
[Crossref]

T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” Academic Press, London, (1984).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 6th edition, 1983).

Appl. Opt. (1)

J. Opt. A: Pure Appl. Opt. (1)

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A: Pure Appl. Opt. 5, S157–S163 (2003).
[Crossref]

Opt. Comm. (2)

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Comm. 268, 253–260 (2006).
[Crossref]

E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Comm. 281, 880–887 (2008).
[Crossref]

Opt. Lett. (2)

Other (2)

T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” Academic Press, London, (1984).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 6th edition, 1983).

Supplementary Material (1)

» Media 1: MOV (136 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) A standard microscope system and (b) a new architecture that permits remote focusing. In this arrangement the image plane is conjugate to an effective focal plane, whose axial position ΔZ depends on the position of mirror M. See main text for the definition of abbreviations.

Fig. 2.
Fig. 2.

Fluorescence confocal imaging system using a Nipkow disc. See main text for the definition of abbreviations.

Fig. 3.
Fig. 3.

Focusing 15µm below the surface of a mouse kidney specimen by (a) focusing with the new architecture, (b) moving the specimen itself and (c) by adjusting the image conjugate.

Fig. 4.
Fig. 4.

(a) Trajectory of R during the acquisition of a single EDF image, (b) the trajectory of R when M2 is tilted in synchrony with the focusing action, (c) a single frame from an EDF movie of a pollen grain and (d) an EDF movie of a pollen grain where the perspective is changed by the user in real-time (Media 1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ Z = 2 n 2 n 1 Δ z ,
Δ X = f tan ( Δ θ ) f Δ θ ,

Metrics