Abstract

We generate experimentally optical bottle beams from incoherent double-charge white-light vortices, and show that their parameters can be efficiently controlled by varying the beam focusing conditions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11,288-290 (1986).
    [CrossRef] [PubMed]
  2. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37,42-55 (2008).
    [CrossRef] [PubMed]
  3. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24,156-159 (1970).
    [CrossRef]
  4. T. Kuga, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78,4713-4716 (1997).
    [CrossRef]
  5. A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6,841-856 (2000).
    [CrossRef]
  6. D. G. Grier, "A revolution in optical manipulation," Nature 424,810-816 (2003).
    [CrossRef] [PubMed]
  7. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30.469-492 (1998).
    [CrossRef]
  8. R. Ozeri, "Large-volume single-beam dark optical trap for atoms using binary phase elements," J. Opt. Soc. Am. B 17,1113-1116 (2000).
    [CrossRef]
  9. J. Arlt and M. J. Padgett, "Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam," Opt. Lett. 25,191-193 (2000).
    [CrossRef]
  10. N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279,229-234 (2007).
    [CrossRef]
  11. P. Rudy, R. Ejnisman, A. Rahman, S. Lee, and N. P. Bigelow, "An all optical dynamical dark trap for neutral atoms," Opt. Express 8,159-165 (2001).
    [CrossRef] [PubMed]
  12. N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, "Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap," Phys. Rev. A 61,031403(R) -031406(R) (2000).
    [CrossRef]
  13. See, e.g., a comprehensive review paper, M. S. Soskin and M. V. Vasnetsov, "Singular optics," in: Progress in Optics, vol. 42, Ed. E. Wolf (Elsevier, Amstredam, 2001).
  14. M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, "Computer-synthesized hologram-based rainbow optical vortices," New J. Phys. 6,196 (2004).
    [CrossRef]
  15. G. Gbur and T. D. Visser, "Coherence vortices in partially coherent beams," Opt. Commun. 222,117-125 (2003).
    [CrossRef]
  16. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop "Alignment or spinning of lasertrapped microscopic waveplates," Nature 394,348-350 (1998).
    [CrossRef]
  17. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes," Phys. Rev. A 45,8185-8189 (1992).
    [CrossRef] [PubMed]
  18. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical Microrheology Using Rotating Laser-Trapped Particles," Phys. Rev. Lett. 92,198104-198107 (2004).
    [CrossRef] [PubMed]
  19. M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, "Optically driven nanorotors: Experiments and model calculations," J. Nanosc. Nanotechn. 7,1800-1803 (2007).
    [CrossRef]
  20. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, "Optical traps with geometric aberrations," Appl. Opt. 45,3425-3429 (2006).
    [CrossRef] [PubMed]
  21. R. K. Singh, P. Senthilkumaran, and K. Singh, "The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background," J. Opt. A : Pure Appl. Opt. 9,543-554 (2007).
    [CrossRef]
  22. R. K. Singh, P. Senthilkumaran, and K. Singh, "Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma," Opt. Commun. 281,923-934 (2008).
    [CrossRef]
  23. J. X. Pu, X. Y. Liu, and S. Nemoto, "Partially coherent bottle beams," Opt. Commun. 252,7-11 (2005).
    [CrossRef]
  24. J. X. Pu, M. W. Dong, and T. Wang, "Generation of adjustable partially coherent bottle beams by use of an axicon-len system," Appl. Opt. 45,7553-7556 (2006).
    [CrossRef] [PubMed]
  25. L. Rao, X. Zheng, Z. Wang, and P. Yei, "Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams," Opt. Commun. 281,1358-1365 (2008).
    [CrossRef]
  26. Z. M. Zhang, J. Pu, and X. Q. Wang, "Focusing of partially coherent Bessel-Gaussian beams through a highnumerical-aperture objective," Opt. Lett. 33,49-51 (2008).
    [CrossRef]
  27. A. Ciattoni, G. Cincotti, and C. Palma, "Circularly polarized beams and vortex generation in uniaxial media," J. Opt. Soc. Am. A 20,163-171 (2003).
    [CrossRef]
  28. A. V. Volyar and T. A. Fadeeva, "Generation of singular beams in uniaxial crystals," Opt. Spectrosc. 94,235-244 (2003).
    [CrossRef]
  29. V. Shvedov, W. Krolikowski, A. Volyar, D. N. Neshev, A. S. Desyatnikov, and Yu. S. Kivshar, "Focusing and correlation properties of white-light optical vortices," Opt. Express 13,7393-7398 (2005).
    [CrossRef] [PubMed]
  30. G. Gbur, T. D. Visser, and E. Wolf, "Hidden singularities in partially coherent and polychromatic wavefields," J. Opt. A 6,S239-S242 (2004).
    [CrossRef]
  31. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. SwartzlanderJr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92,143905-143908 (2004).
    [CrossRef] [PubMed]
  32. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, "Spatial correlation vortices in partially coherent light: theory," J. Opt. Soc. Am. B 21,1895-1898 (2004).
    [CrossRef]
  33. T. van Dijk, G. Gbur, and T. D. Visser, "Shaping the focal intensity distribution using spatial coherence," J. Opt. Soc. Am. A,  25,575-581 (2008).
    [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics (Pergaman, Oxfod, 1969).
  35. S. A. Collins, "Lens-system diffraction integral written in terms of matrix optics," J. Opt. Soc. Am. 60,1168-1177 (1970).
    [CrossRef]

2008

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37,42-55 (2008).
[CrossRef] [PubMed]

R. K. Singh, P. Senthilkumaran, and K. Singh, "Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma," Opt. Commun. 281,923-934 (2008).
[CrossRef]

L. Rao, X. Zheng, Z. Wang, and P. Yei, "Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams," Opt. Commun. 281,1358-1365 (2008).
[CrossRef]

Z. M. Zhang, J. Pu, and X. Q. Wang, "Focusing of partially coherent Bessel-Gaussian beams through a highnumerical-aperture objective," Opt. Lett. 33,49-51 (2008).
[CrossRef]

T. van Dijk, G. Gbur, and T. D. Visser, "Shaping the focal intensity distribution using spatial coherence," J. Opt. Soc. Am. A,  25,575-581 (2008).
[CrossRef]

2007

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, "Optically driven nanorotors: Experiments and model calculations," J. Nanosc. Nanotechn. 7,1800-1803 (2007).
[CrossRef]

R. K. Singh, P. Senthilkumaran, and K. Singh, "The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background," J. Opt. A : Pure Appl. Opt. 9,543-554 (2007).
[CrossRef]

N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279,229-234 (2007).
[CrossRef]

2006

2005

2004

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, "Computer-synthesized hologram-based rainbow optical vortices," New J. Phys. 6,196 (2004).
[CrossRef]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, "Spatial correlation vortices in partially coherent light: theory," J. Opt. Soc. Am. B 21,1895-1898 (2004).
[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, "Hidden singularities in partially coherent and polychromatic wavefields," J. Opt. A 6,S239-S242 (2004).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. SwartzlanderJr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92,143905-143908 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical Microrheology Using Rotating Laser-Trapped Particles," Phys. Rev. Lett. 92,198104-198107 (2004).
[CrossRef] [PubMed]

2003

A. Ciattoni, G. Cincotti, and C. Palma, "Circularly polarized beams and vortex generation in uniaxial media," J. Opt. Soc. Am. A 20,163-171 (2003).
[CrossRef]

G. Gbur and T. D. Visser, "Coherence vortices in partially coherent beams," Opt. Commun. 222,117-125 (2003).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, "Generation of singular beams in uniaxial crystals," Opt. Spectrosc. 94,235-244 (2003).
[CrossRef]

D. G. Grier, "A revolution in optical manipulation," Nature 424,810-816 (2003).
[CrossRef] [PubMed]

2001

2000

1998

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop "Alignment or spinning of lasertrapped microscopic waveplates," Nature 394,348-350 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30.469-492 (1998).
[CrossRef]

1997

T. Kuga, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78,4713-4716 (1997).
[CrossRef]

1992

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes," Phys. Rev. A 45,8185-8189 (1992).
[CrossRef] [PubMed]

1986

1970

S. A. Collins, "Lens-system diffraction integral written in terms of matrix optics," J. Opt. Soc. Am. 60,1168-1177 (1970).
[CrossRef]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24,156-159 (1970).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes," Phys. Rev. A 45,8185-8189 (1992).
[CrossRef] [PubMed]

Arkhelyuk, O. O.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, "Computer-synthesized hologram-based rainbow optical vortices," New J. Phys. 6,196 (2004).
[CrossRef]

Arlt, J.

Ashkin, A.

A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6,841-856 (2000).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11,288-290 (1986).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24,156-159 (1970).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes," Phys. Rev. A 45,8185-8189 (1992).
[CrossRef] [PubMed]

Bigelow, N. P.

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical Microrheology Using Rotating Laser-Trapped Particles," Phys. Rev. Lett. 92,198104-198107 (2004).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bokor, N.

N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279,229-234 (2007).
[CrossRef]

Chu, S.

Ciattoni, A.

Cincotti, G.

Collins, S. A.

Davidson, N.

N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279,229-234 (2007).
[CrossRef]

Deepak, F. L.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, "Optically driven nanorotors: Experiments and model calculations," J. Nanosc. Nanotechn. 7,1800-1803 (2007).
[CrossRef]

Desyatnikov, A. S.

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37,42-55 (2008).
[CrossRef] [PubMed]

Dong, M. W.

Dziedzic, J. M.

Ejnisman, R.

Fadeeva, T. A.

A. V. Volyar and T. A. Fadeeva, "Generation of singular beams in uniaxial crystals," Opt. Spectrosc. 94,235-244 (2003).
[CrossRef]

Friese, M. E. J.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30.469-492 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop "Alignment or spinning of lasertrapped microscopic waveplates," Nature 394,348-350 (1998).
[CrossRef]

Gardel, E.

Gbur, G.

T. van Dijk, G. Gbur, and T. D. Visser, "Shaping the focal intensity distribution using spatial coherence," J. Opt. Soc. Am. A,  25,575-581 (2008).
[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, "Hidden singularities in partially coherent and polychromatic wavefields," J. Opt. A 6,S239-S242 (2004).
[CrossRef]

G. Gbur and T. D. Visser, "Coherence vortices in partially coherent beams," Opt. Commun. 222,117-125 (2003).
[CrossRef]

Grier, D. G.

Gu, M.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37,42-55 (2008).
[CrossRef] [PubMed]

Heckenberg, N. R.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical Microrheology Using Rotating Laser-Trapped Particles," Phys. Rev. Lett. 92,198104-198107 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop "Alignment or spinning of lasertrapped microscopic waveplates," Nature 394,348-350 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30.469-492 (1998).
[CrossRef]

Khan, M.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, "Optically driven nanorotors: Experiments and model calculations," J. Nanosc. Nanotechn. 7,1800-1803 (2007).
[CrossRef]

Kivshar, Yu. S.

Krolikowski, W.

Kuga, T.

T. Kuga, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78,4713-4716 (1997).
[CrossRef]

Lee, S.

Liu, X. Y.

J. X. Pu, X. Y. Liu, and S. Nemoto, "Partially coherent bottle beams," Opt. Commun. 252,7-11 (2005).
[CrossRef]

Maleev, I. D.

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, "Spatial correlation vortices in partially coherent light: theory," J. Opt. Soc. Am. B 21,1895-1898 (2004).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. SwartzlanderJr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92,143905-143908 (2004).
[CrossRef] [PubMed]

Marathay, A. S.

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. SwartzlanderJr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92,143905-143908 (2004).
[CrossRef] [PubMed]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, "Spatial correlation vortices in partially coherent light: theory," J. Opt. Soc. Am. B 21,1895-1898 (2004).
[CrossRef]

Nemoto, S.

J. X. Pu, X. Y. Liu, and S. Nemoto, "Partially coherent bottle beams," Opt. Commun. 252,7-11 (2005).
[CrossRef]

Neshev, D. N.

Nieminen, T. A.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical Microrheology Using Rotating Laser-Trapped Particles," Phys. Rev. Lett. 92,198104-198107 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop "Alignment or spinning of lasertrapped microscopic waveplates," Nature 394,348-350 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30.469-492 (1998).
[CrossRef]

Ozeri, R.

Padgett, M. J.

Palacios, D. M.

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, "Spatial correlation vortices in partially coherent light: theory," J. Opt. Soc. Am. B 21,1895-1898 (2004).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. SwartzlanderJr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92,143905-143908 (2004).
[CrossRef] [PubMed]

Palma, C.

Polyanskii, P. V.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, "Computer-synthesized hologram-based rainbow optical vortices," New J. Phys. 6,196 (2004).
[CrossRef]

Pu, J.

Pu, J. X.

Rahman, A.

Rao, C. N. R.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, "Optically driven nanorotors: Experiments and model calculations," J. Nanosc. Nanotechn. 7,1800-1803 (2007).
[CrossRef]

Rao, L.

L. Rao, X. Zheng, Z. Wang, and P. Yei, "Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams," Opt. Commun. 281,1358-1365 (2008).
[CrossRef]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37,42-55 (2008).
[CrossRef] [PubMed]

Roichman, Y.

Rubinsztein-Dunlop, H.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical Microrheology Using Rotating Laser-Trapped Particles," Phys. Rev. Lett. 92,198104-198107 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop "Alignment or spinning of lasertrapped microscopic waveplates," Nature 394,348-350 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30.469-492 (1998).
[CrossRef]

Rudy, P.

Senthilkumaran, P.

R. K. Singh, P. Senthilkumaran, and K. Singh, "Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma," Opt. Commun. 281,923-934 (2008).
[CrossRef]

R. K. Singh, P. Senthilkumaran, and K. Singh, "The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background," J. Opt. A : Pure Appl. Opt. 9,543-554 (2007).
[CrossRef]

Shvedov, V.

Singh, K.

R. K. Singh, P. Senthilkumaran, and K. Singh, "Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma," Opt. Commun. 281,923-934 (2008).
[CrossRef]

R. K. Singh, P. Senthilkumaran, and K. Singh, "The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background," J. Opt. A : Pure Appl. Opt. 9,543-554 (2007).
[CrossRef]

Singh, R. K.

R. K. Singh, P. Senthilkumaran, and K. Singh, "Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma," Opt. Commun. 281,923-934 (2008).
[CrossRef]

R. K. Singh, P. Senthilkumaran, and K. Singh, "The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background," J. Opt. A : Pure Appl. Opt. 9,543-554 (2007).
[CrossRef]

Sood, A. K.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, "Optically driven nanorotors: Experiments and model calculations," J. Nanosc. Nanotechn. 7,1800-1803 (2007).
[CrossRef]

Soskin, M. S.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, "Computer-synthesized hologram-based rainbow optical vortices," New J. Phys. 6,196 (2004).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes," Phys. Rev. A 45,8185-8189 (1992).
[CrossRef] [PubMed]

Swartzlander, G. A.

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, "Spatial correlation vortices in partially coherent light: theory," J. Opt. Soc. Am. B 21,1895-1898 (2004).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. SwartzlanderJr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92,143905-143908 (2004).
[CrossRef] [PubMed]

van Dijk, T.

Visser, T. D.

T. van Dijk, G. Gbur, and T. D. Visser, "Shaping the focal intensity distribution using spatial coherence," J. Opt. Soc. Am. A,  25,575-581 (2008).
[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, "Hidden singularities in partially coherent and polychromatic wavefields," J. Opt. A 6,S239-S242 (2004).
[CrossRef]

G. Gbur and T. D. Visser, "Coherence vortices in partially coherent beams," Opt. Commun. 222,117-125 (2003).
[CrossRef]

Volyar, A.

Volyar, A. V.

A. V. Volyar and T. A. Fadeeva, "Generation of singular beams in uniaxial crystals," Opt. Spectrosc. 94,235-244 (2003).
[CrossRef]

Waldron, A.

Wang, T.

Wang, X. Q.

Wang, Z.

L. Rao, X. Zheng, Z. Wang, and P. Yei, "Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams," Opt. Commun. 281,1358-1365 (2008).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes," Phys. Rev. A 45,8185-8189 (1992).
[CrossRef] [PubMed]

Wolf, E.

G. Gbur, T. D. Visser, and E. Wolf, "Hidden singularities in partially coherent and polychromatic wavefields," J. Opt. A 6,S239-S242 (2004).
[CrossRef]

Yei, P.

L. Rao, X. Zheng, Z. Wang, and P. Yei, "Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams," Opt. Commun. 281,1358-1365 (2008).
[CrossRef]

Zhang, Z. M.

Zheng, X.

L. Rao, X. Zheng, Z. Wang, and P. Yei, "Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams," Opt. Commun. 281,1358-1365 (2008).
[CrossRef]

Adv. Quantum Chem.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30.469-492 (1998).
[CrossRef]

Appl. Opt.

Chem. Soc. Rev.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37,42-55 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6,841-856 (2000).
[CrossRef]

J. Nanosc. Nanotechn.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, "Optically driven nanorotors: Experiments and model calculations," J. Nanosc. Nanotechn. 7,1800-1803 (2007).
[CrossRef]

J. Opt. A

G. Gbur, T. D. Visser, and E. Wolf, "Hidden singularities in partially coherent and polychromatic wavefields," J. Opt. A 6,S239-S242 (2004).
[CrossRef]

J. Opt. A : Pure Appl. Opt.

R. K. Singh, P. Senthilkumaran, and K. Singh, "The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background," J. Opt. A : Pure Appl. Opt. 9,543-554 (2007).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop "Alignment or spinning of lasertrapped microscopic waveplates," Nature 394,348-350 (1998).
[CrossRef]

D. G. Grier, "A revolution in optical manipulation," Nature 424,810-816 (2003).
[CrossRef] [PubMed]

New J. Phys.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, "Computer-synthesized hologram-based rainbow optical vortices," New J. Phys. 6,196 (2004).
[CrossRef]

Opt. Commun.

G. Gbur and T. D. Visser, "Coherence vortices in partially coherent beams," Opt. Commun. 222,117-125 (2003).
[CrossRef]

R. K. Singh, P. Senthilkumaran, and K. Singh, "Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma," Opt. Commun. 281,923-934 (2008).
[CrossRef]

J. X. Pu, X. Y. Liu, and S. Nemoto, "Partially coherent bottle beams," Opt. Commun. 252,7-11 (2005).
[CrossRef]

L. Rao, X. Zheng, Z. Wang, and P. Yei, "Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams," Opt. Commun. 281,1358-1365 (2008).
[CrossRef]

N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279,229-234 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

A. V. Volyar and T. A. Fadeeva, "Generation of singular beams in uniaxial crystals," Opt. Spectrosc. 94,235-244 (2003).
[CrossRef]

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes," Phys. Rev. A 45,8185-8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical Microrheology Using Rotating Laser-Trapped Particles," Phys. Rev. Lett. 92,198104-198107 (2004).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24,156-159 (1970).
[CrossRef]

T. Kuga, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78,4713-4716 (1997).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. SwartzlanderJr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92,143905-143908 (2004).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics (Pergaman, Oxfod, 1969).

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, "Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap," Phys. Rev. A 61,031403(R) -031406(R) (2000).
[CrossRef]

See, e.g., a comprehensive review paper, M. S. Soskin and M. V. Vasnetsov, "Singular optics," in: Progress in Optics, vol. 42, Ed. E. Wolf (Elsevier, Amstredam, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup: 1, halogen white-light source; 2, bundle of multi-mode optical fibers (D=5mm); 3, IR filter; 4, microscope objective; 5, aperture (2 mm); 6 and 12, polarizers; 7 and 11, achromatic quarter-wave plates; 8 and 10, collimation lenses; 9, uniaxial crystal (CaCO3); 13, projection lens; 14, color filters; 15, color CCD.

Fig. 2.
Fig. 2.

Experimental longitudinal and cross-section distribution of intensity of particular coherence optical vortex near the focal region. The distance between the vortex formation plane and focusing lens (f=50 mm) is 170 mm. The dark core diameter for the labeled cros-sections is: I - 160 µm; II - 180 µm; III - 200 µm; IV - 200 µm; and V - 150 µm.

Fig. 3.
Fig. 3.

Experimentallymeasured visibility of the bottle beamfor the waists (a) w 0=0.3mm (9 mm crystal) and (b) w 0=0.2 mm (1 mm crystal); source image plane is at z=0. 3. Theoretical analysis

Fig. 4.
Fig. 4.

Calculated longitudinal intensity distribution for (a) coherent, (b) highly incoherent, and (c) partially coherent (coherence angle α=0.25) vortex beams. Distance z l between the vortex plane formation and the lens (f=50 mm) position is: (a,b) z l =10 f, (c) z l =3f. Case (c) corresponds to the experimental results shown in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( P ) = S S I ( P 1 ) I ( P 2 ) γ ( P 1 , P 2 ) exp [ 2 i π λ ̅ ( s 1 s 2 ) ] s 1 s 2 Λ 1 Λ 2 * d P 1 d P 2 ,
γ ( P 1 , P 2 ) = 2 J 1 ( u ) u ( x 1 + i y 1 ) l ( x 2 i y 2 ) l ( x 1 2 + y 1 2 ) l 2 ( x 2 2 + y 2 2 ) l 2 ,

Metrics