Abstract

Conventional condensers using rotational symmetric devices perform far from their theoretical limits when transferring optical power from sources such as arc lamps or halogen bulbs to the rectangular entrance of homogenizing prisms (target). We present a free-form condenser design (calculated with the SMS method) that overcomes the limitations inherent to rotational devices and can send to the target 1.8 times the power sent by an equivalent elliptical condenser for a 4:1 target aspect ratio and 1.5 times for 16:9 target and for practical values of target etendue.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Miñano and J. C. González, "New method of design of nonimaging concentrators," Appl. Opt. 31, 3051-3060 (1992), http://www.opticsinfobase.org/abstract.cfm?URI=ao-31-16-3051
    [CrossRef] [PubMed]
  2. J. C. Miñano, P. Benítez, and J. C. González, "RX: a nonimaging concentrator," Appl. Opt. 34, 2226-2235 (1995), http://www.opticsinfobase.org/abstract.cfm?URI=ao-34-13-2226.
    [CrossRef] [PubMed]
  3. J. C. Miñano, J. C. Gonźlez, and P. Benítez, "A high-gain, compact, nonimaging concentrator: RXI," Appl. Opt. 34, 7850-7856 (1995), http://www.opticsinfobase.org/abstract.cfm?URI=ao-34-34-7850.
    [CrossRef] [PubMed]
  4. P. Benítez and J. C. Miñano, "Ultrahigh-numerical-aperture imaging concentrator," J. Opt. Soc. Am. A 14, 1988-1997 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-14-8-1988.
    [CrossRef]
  5. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics, (Academic Press, New York, 2005)
  6. W. Cassarly, "Nonimaging Optics," in Handbook of Optics, 2nd ed., (McGraw-Hill, NewYork, 2001) pp. 2.23-2.42.
  7. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
    [CrossRef]
  8. J. Chaves, Introduction to Nonimaging Optics, (CRC Press, Boca Ratón, 2008).
    [CrossRef]
  9. H. Moench and A. Ritz. "Higher Output, More Compact UHP Lamp Systems," SID Int. Symp. Digest Tech. Papers (33) 1, (2002), pp. 1160-1163.
  10. K. Strobl, "Efficient light engine systems, components and methods of manufacture," US Patent 6,356,700 (2002).
  11. K. K. Li, "Condensing and collecting optical system using parabolic reflectors or a corresponding ellipsoid/ hyperboloid pair of reflectors," US Patent 6,672,740 (2004).
  12. N. Tadaaki, "Illuminator and projection type display device," JP Patent 7,174,974 (1995).
  13. J. A. Shimizu, "Method and light collection system for producing uniform arc image size," US Patent 5,966,250 (1999).
  14. D. S. Dewald, S. M. Penn, and M. Davis, "Sequential Color Recapture and Dynamic Filtering: A Method of Scrolling Color," SID Int. Symp. Digest Tech. Papers (32) 1, (2001), pp. 1076-1079.
  15. J. A. Shimizu, "Scrolling Color LCOS for HDTV Rear projection," SID Int. Symp. Digest Tech. Papers, (32) 1, (2001), pp. 1072-1075.
  16. M. Duelli and A. T. Taylor, "Novel polarization conversion and integration system for projection displays," SID Int. Symp. Digest Tech. Papers (34) 1, (2003), pp. 766-769.
  17. http://www.opticalres.com/lt/ltprodds_f.html
  18. http://www.rhino3d.com/
  19. http://www.lpi-llc.com/
  20. N. Shatz and J. C. Bortz, "Consequences of Symmetry," in Nonimaging Optics, R. Winston, J. C. Miñano, and P. Benítez, (Academic Press, New York, 2005) Chap. 10.

2003

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

M. Duelli and A. T. Taylor, "Novel polarization conversion and integration system for projection displays," SID Int. Symp. Digest Tech. Papers (34) 1, (2003), pp. 766-769.

2002

H. Moench and A. Ritz. "Higher Output, More Compact UHP Lamp Systems," SID Int. Symp. Digest Tech. Papers (33) 1, (2002), pp. 1160-1163.

2001

D. S. Dewald, S. M. Penn, and M. Davis, "Sequential Color Recapture and Dynamic Filtering: A Method of Scrolling Color," SID Int. Symp. Digest Tech. Papers (32) 1, (2001), pp. 1076-1079.

J. A. Shimizu, "Scrolling Color LCOS for HDTV Rear projection," SID Int. Symp. Digest Tech. Papers, (32) 1, (2001), pp. 1072-1075.

1997

1995

1992

Alvarez, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

Benítez, P.

Blen, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

Chaves, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

Davis, M.

D. S. Dewald, S. M. Penn, and M. Davis, "Sequential Color Recapture and Dynamic Filtering: A Method of Scrolling Color," SID Int. Symp. Digest Tech. Papers (32) 1, (2001), pp. 1076-1079.

Dewald, D. S.

D. S. Dewald, S. M. Penn, and M. Davis, "Sequential Color Recapture and Dynamic Filtering: A Method of Scrolling Color," SID Int. Symp. Digest Tech. Papers (32) 1, (2001), pp. 1076-1079.

Dross, O.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

Duelli, M.

M. Duelli and A. T. Taylor, "Novel polarization conversion and integration system for projection displays," SID Int. Symp. Digest Tech. Papers (34) 1, (2003), pp. 766-769.

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

González, J. C.

Gonzlez, J. C.

Hernández, M.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

Miñano, J. C.

Moench, H.

H. Moench and A. Ritz. "Higher Output, More Compact UHP Lamp Systems," SID Int. Symp. Digest Tech. Papers (33) 1, (2002), pp. 1160-1163.

Mohedano, R.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

Penn, S. M.

D. S. Dewald, S. M. Penn, and M. Davis, "Sequential Color Recapture and Dynamic Filtering: A Method of Scrolling Color," SID Int. Symp. Digest Tech. Papers (32) 1, (2001), pp. 1076-1079.

Ritz, A.

H. Moench and A. Ritz. "Higher Output, More Compact UHP Lamp Systems," SID Int. Symp. Digest Tech. Papers (33) 1, (2002), pp. 1160-1163.

Shimizu, J. A.

J. A. Shimizu, "Scrolling Color LCOS for HDTV Rear projection," SID Int. Symp. Digest Tech. Papers, (32) 1, (2001), pp. 1072-1075.

Taylor, A. T.

M. Duelli and A. T. Taylor, "Novel polarization conversion and integration system for projection displays," SID Int. Symp. Digest Tech. Papers (34) 1, (2003), pp. 766-769.

Appl. Opt.

J. Opt. Soc. Am. A

Proc. SPIE

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, J. Alvarez, W. Falicoff. "SMS Design Method in 3D Geometry: Examples and Applications," Proc. SPIE 5185, 18-29 (2003).
[CrossRef]

SID Int. Symp. Digest Tech. Papers

D. S. Dewald, S. M. Penn, and M. Davis, "Sequential Color Recapture and Dynamic Filtering: A Method of Scrolling Color," SID Int. Symp. Digest Tech. Papers (32) 1, (2001), pp. 1076-1079.

J. A. Shimizu, "Scrolling Color LCOS for HDTV Rear projection," SID Int. Symp. Digest Tech. Papers, (32) 1, (2001), pp. 1072-1075.

M. Duelli and A. T. Taylor, "Novel polarization conversion and integration system for projection displays," SID Int. Symp. Digest Tech. Papers (34) 1, (2003), pp. 766-769.

H. Moench and A. Ritz. "Higher Output, More Compact UHP Lamp Systems," SID Int. Symp. Digest Tech. Papers (33) 1, (2002), pp. 1160-1163.

Other

K. Strobl, "Efficient light engine systems, components and methods of manufacture," US Patent 6,356,700 (2002).

K. K. Li, "Condensing and collecting optical system using parabolic reflectors or a corresponding ellipsoid/ hyperboloid pair of reflectors," US Patent 6,672,740 (2004).

N. Tadaaki, "Illuminator and projection type display device," JP Patent 7,174,974 (1995).

J. A. Shimizu, "Method and light collection system for producing uniform arc image size," US Patent 5,966,250 (1999).

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics, (Academic Press, New York, 2005)

W. Cassarly, "Nonimaging Optics," in Handbook of Optics, 2nd ed., (McGraw-Hill, NewYork, 2001) pp. 2.23-2.42.

http://www.opticalres.com/lt/ltprodds_f.html

http://www.rhino3d.com/

http://www.lpi-llc.com/

N. Shatz and J. C. Bortz, "Consequences of Symmetry," in Nonimaging Optics, R. Winston, J. C. Miñano, and P. Benítez, (Academic Press, New York, 2005) Chap. 10.

J. Chaves, Introduction to Nonimaging Optics, (CRC Press, Boca Ratón, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Conventional condenser with elliptical reflector and homogenizing prism.

Fig. 2.
Fig. 2.

Source images of any conventional elliptical condenser: (a) variable lengths and widths, as they replicate the elongated shape of the UHP arc (b), they are about 4 times longer than wide, (c) they rotate at the target due to the condenser’s rotational symmetry, (d) Source images do not fit well with the rectangular 16:9 target, shown as a dashed-line rectangle.

Fig. 3.
Fig. 3.

Example of XX 3D condenser, formed by two free-form mirrors, the primary optical element (POE) and a secondary optical element (SOE).

Fig. 4.
Fig. 4.

Initial curve R0 (seed rib) calculation, which is done with source spherical wavefronts emitted from points A and B and with target spherical wavefronts centered on A’ and B’. This two-point mapping defines magnification N (negative in this figure).

Fig. 5.
Fig. 5.

SMS-ribs calculation, which is done with source spherical wavefronts emitted from points C and D and with target spherical wavefronts centered on C’ and D’. This two-point mapping defines magnification M (negative in this figure).

Fig. 6.
Fig. 6.

The XX 3D condenser, in contrast to conventional condensers (left), can be designed to produce no rotation of projected arc images so that they all can fit rectangular apertures.

Fig. 7.
Fig. 7.

Source and target definitions: Every points of the source (a cylindrical surface) emits in its entire open hemisphere excepting in the directions forming an angle smaller than βMIN with the cylinder axis. The target is a rectangle accepting radiation coming within a cone normal of ϕMAX to the target surface.

Fig. 8.
Fig. 8.

Rays of the input wave fronts (WFix) and center points of the output wavefronts (WFox) used for the SMS 3D design.

Fig. 9.
Fig. 9.

Spines contained on plane x=0 for the XX families with (a) M>0 and (b) M<0.

Fig. 10.
Fig. 10.

x=0 section of one design variation in which the half of the POE mirror at y>0 reflects the light towards the half of the SOE at y<0, the paired POE and SOE halves are not adjacent.

Fig. 11.
Fig. 11.

Selected XX design of the family M<0, N<0 and non-adjacent POE and SOE paired halves (only POE with y<0 and SOE with y>0 are shown at the left and at right hand sides). Source and targets are not shown to scale.

Fig. 12.
Fig. 12.

Three views with some dimensions (in mm) of the selected XX design of Fig. 11.

Fig. 13.
Fig. 13.

Ray tracing results: collection efficiency versus etendue of the target for the condenser in Fig. 11. The maximum theoretical performance and that of conventional elliptical condenser are also shown for comparison. The etendue of the source is 3.13 mm2. All mirrors have 100% reflectivity. Gain defined as the ratio of the collection efficiencies of a given condenser to that of the elliptical condenser. XX in Fig. 11 shows gains up to 1.8 and greater than 1.5 in a wide range of etendue. The theoretical limit could achieve gains greater than 2.4.

Fig. 14.
Fig. 14.

Ray tracing results: (a) illuminance distribution on the target plane for the condenser of Fig. 11, (b) illuminance along a y slice, (c) illuminance along an x slice, (d) intensity distribution at the target assuming the source has a flux of 1000 lm.

Fig. 15.
Fig. 15.

Collection efficiency (i.e., power on the target over total source power) vs. the normalized brightness (average brightness on target over source brightness).

Fig. 16.
Fig. 16.

Ray tracing results: (left) collection efficiency of an XX condenser versus the 3D etendue of a 16:9 target with circular and square Field of View (FoV). The maximum theoretical performance and the conventional elliptical condenser (with circular FoV) are also shown for comparison. All mirrors have 100% reflectivity. The 3D etendue of the source is 6.96 mm2. The right hand side shows the same results in a collection-efficiency vs normalizedbrightness plane (normalized brightness=average brightness on target/source brightness)

Fig. 17.
Fig. 17.

Demonstrator prototype diagrams; (a) Cross-section; (b) Cutaway perspective view.

Fig. 18.
Fig. 18.

Nickel electroformed XX condenser demonstrator for a filament lamp and two targets (a). The upper POE reflector half has been removed in (b), (c) and (d) to show the lamp and the SOE. The photography in (c) is taken within the angular field of the targets so the filament images can been seen. When the filament is emitting, the two images are formed on a paper placed at the target’s plane (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( x y ) = ( N 0 0 M ) ( x z ) + ( c 1 c 2 )
E source = π DL ( π + sin ( 2 β MIN ) 2 β MIN ) + 1 2 π 2 D 2 ( 1 sin 2 β MIN )

Metrics