Abstract

A type of nano-confined light source based on SPP Bragg reflectors and a nanocavity has been realized. The structures consisting of a nanocavity surrounded by annular grooves are used to obtain a single, localized and non-radiating central peak, which can be used as a nano source. Characterization of the SPP field in the vicinity of the samples with different structural parameters is accomplished by the scanning near-field optical microscope (SNOM), demonstrating the ability of the structures to enhance the peak intensity and to suppress the sidelobes. During 600nm distance away from the sample surface, the FWHM of the central peak is below 285nm (0.45λ), and the modifications of the structural parameters result in at least 1.27 times enhancement of the central peak intensity together with the sidelobe suppression of no more than 73% of the central peak intensity. Numerical simulations based on FDTD method show a good agreement with the experimental results, and give some clues to understand the physical mechanisms behind these phenomena. This type of SPP-based nano source is promising to be applied in near-field imaging, data storage, optical manipulation and localized spectrum detection.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
    [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
    [CrossRef] [PubMed]
  3. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
    [CrossRef]
  4. K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
    [CrossRef]
  5. E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110-1-3 (2006).
    [CrossRef]
  6. F. Zenhausern, M. P. O. Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
    [CrossRef]
  7. Y. Inouye and S. Kawata, "Near-Field Scanning Optical Microscope With A Metallic Probe Tip," Opt. Lett. 19, 159-161 (1994).
    [CrossRef] [PubMed]
  8. L. Novotny, D. W. Pohl, and B. Hecht, "Scanning Near-Field Optical Probe With Ultrasmall Spot Size," Opt. Lett. 20, 970-972 (1995).
    [CrossRef] [PubMed]
  9. T. Grosjean and D. Courjon, "Immaterial tip concept by light confinement," J. Microsc. 202, 273-278 (2001).
    [CrossRef] [PubMed]
  10. T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
    [CrossRef] [PubMed]
  11. T. Hong, J. Wang, L. Sun, and D. Li, "Numerical simulation analysis of a near-field optical virtual probe," Appl. Phys. Lett. 81, 3452-3454 (2002).
    [CrossRef]
  12. T. Hong, J. Wang, L. Sun, and D. Li, "Numerical and experimental research on the near-field optical virtual probe," Scanning 26, 57-62 (2004).
  13. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004).
    [CrossRef]
  14. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
    [CrossRef]
  15. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107-1-3 (2005).
  16. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
    [CrossRef]
  17. K. G. Dmitri, F. P. P. David, W. V. Michael, and Z. Xiang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75, 035431-1-5 (2007).
  18. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
    [CrossRef]
  19. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
    [CrossRef] [PubMed]
  20. J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
    [CrossRef]
  21. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
    [CrossRef]
  22. E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, "A virtual optical probe based on localized surface plasmon polaritons," Opt. Express 13, 7017-7027 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7017.
    [CrossRef] [PubMed]
  23. B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
    [CrossRef] [PubMed]
  24. G. Yiyang and V. Jelena, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113-1-3 (2007).
  25. C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors," Phys. Rev. B 76, 155109-1-5 (2007).
  26. C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator," Appl. Phys. Lett. 91, 253105-1-3 (2007).
  27. J. C. Weeber, A. Bouhelier, G. ColasdesFrancs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano. Lett. 7, 1352-1359 (2007).
    [CrossRef] [PubMed]
  28. J. C. Weeber, A. Bouhelier, G. C. d. Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, "Surface-plasmon hopping along coupled coplanar cavities," Phys. Rev. B 76, 113405-1-4 (2007).
    [CrossRef]
  29. K. Askin, S. S. Senlik, and A. Atilla, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130-1-7 (2008).
  30. C. Ding, X. Hu, P. Jiang, and Q. Gong, "Tunable surface plasmon polariton microcavity," Phys. Rev. A 372, 4536-4538 (2008).
  31. Q. Wang, J. Wang, and S. Zhang, "Confined optical fields based on surface plasmon polaritons," Proc. SPIE 6831, 68310T-1-6 (2007).
  32. Q. Wang, J. Wang, and S. Zhang, "Confined optical field based on surface plasmon polaritons and the interactions with nano-spheres," J. Opt. Soc. Am. B 25, 1096-1104 (2008).
    [CrossRef]
  33. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge U. Press, Cambridge, 2006).
  34. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
    [CrossRef]

2008 (3)

K. Askin, S. S. Senlik, and A. Atilla, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130-1-7 (2008).

C. Ding, X. Hu, P. Jiang, and Q. Gong, "Tunable surface plasmon polariton microcavity," Phys. Rev. A 372, 4536-4538 (2008).

Q. Wang, J. Wang, and S. Zhang, "Confined optical field based on surface plasmon polaritons and the interactions with nano-spheres," J. Opt. Soc. Am. B 25, 1096-1104 (2008).
[CrossRef]

2007 (7)

B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
[CrossRef] [PubMed]

G. Yiyang and V. Jelena, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113-1-3 (2007).

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors," Phys. Rev. B 76, 155109-1-5 (2007).

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator," Appl. Phys. Lett. 91, 253105-1-3 (2007).

J. C. Weeber, A. Bouhelier, G. ColasdesFrancs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano. Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

J. C. Weeber, A. Bouhelier, G. C. d. Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, "Surface-plasmon hopping along coupled coplanar cavities," Phys. Rev. B 76, 113405-1-4 (2007).
[CrossRef]

K. G. Dmitri, F. P. P. David, W. V. Michael, and Z. Xiang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75, 035431-1-5 (2007).

2006 (3)

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110-1-3 (2006).
[CrossRef]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

2005 (3)

E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, "A virtual optical probe based on localized surface plasmon polaritons," Opt. Express 13, 7017-7027 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7017.
[CrossRef] [PubMed]

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107-1-3 (2005).

2004 (4)

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical and experimental research on the near-field optical virtual probe," Scanning 26, 57-62 (2004).

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004).
[CrossRef]

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

2003 (2)

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
[CrossRef] [PubMed]

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical simulation analysis of a near-field optical virtual probe," Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
[CrossRef]

2001 (1)

T. Grosjean and D. Courjon, "Immaterial tip concept by light confinement," J. Microsc. 202, 273-278 (2001).
[CrossRef] [PubMed]

1999 (1)

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

1995 (1)

1994 (2)

Y. Inouye and S. Kawata, "Near-Field Scanning Optical Microscope With A Metallic Probe Tip," Opt. Lett. 19, 159-161 (1994).
[CrossRef] [PubMed]

F. Zenhausern, M. P. O. Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Abdelsalam, M. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Antoine, L.

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator," Appl. Phys. Lett. 91, 253105-1-3 (2007).

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors," Phys. Rev. B 76, 155109-1-5 (2007).

Askin, K.

K. Askin, S. S. Senlik, and A. Atilla, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130-1-7 (2008).

Atilla, A.

K. Askin, S. S. Senlik, and A. Atilla, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130-1-7 (2008).

Aussenegg, F. R.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
[CrossRef] [PubMed]

Baghdasaryan, K. S.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

Baldwin, K.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Bartlett, P. N.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Baudrion, A. L.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

Baudrion, A.-L.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Baumberg, J. J.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Bouhelier, A.

J. C. Weeber, A. Bouhelier, G. C. d. Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, "Surface-plasmon hopping along coupled coplanar cavities," Phys. Rev. B 76, 113405-1-4 (2007).
[CrossRef]

J. C. Weeber, A. Bouhelier, G. ColasdesFrancs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano. Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Boyle, M. P. O.

F. Zenhausern, M. P. O. Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Chen, Y.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
[CrossRef]

Chichester, R.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Cintra, S.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Cole, R. M.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

T. Grosjean and D. Courjon, "Immaterial tip concept by light confinement," J. Microsc. 202, 273-278 (2001).
[CrossRef] [PubMed]

David, F. P. P.

K. G. Dmitri, F. P. P. David, W. V. Michael, and Z. Xiang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75, 035431-1-5 (2007).

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Dereux, A.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Descrovi, E.

Devaux, E.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Dhar, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Di, S.

B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
[CrossRef] [PubMed]

Ding, C.

C. Ding, X. Hu, P. Jiang, and Q. Gong, "Tunable surface plasmon polariton microcavity," Phys. Rev. A 372, 4536-4538 (2008).

Ditlbacher, H.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
[CrossRef] [PubMed]

Dmitri, K. G.

K. G. Dmitri, F. P. P. David, W. V. Michael, and Z. Xiang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75, 035431-1-5 (2007).

Ebbesen, T.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Ebbesen, T. W.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

Girard, C.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Gong, Q.

C. Ding, X. Hu, P. Jiang, and Q. Gong, "Tunable surface plasmon polariton microcavity," Phys. Rev. A 372, 4536-4538 (2008).

Gonzalez, M. U.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

González, M. U.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Grosjean, T.

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

T. Grosjean and D. Courjon, "Immaterial tip concept by light confinement," J. Microsc. 202, 273-278 (2001).
[CrossRef] [PubMed]

Gu, B.-y.

B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Hecht, B.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, "Scanning Near-Field Optical Probe With Ultrasmall Spot Size," Opt. Lett. 20, 970-972 (1995).
[CrossRef] [PubMed]

Herzig, H.-P.

Hobson, W. S.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Hohenau, A.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
[CrossRef] [PubMed]

Hong, T.

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical and experimental research on the near-field optical virtual probe," Scanning 26, 57-62 (2004).

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical simulation analysis of a near-field optical virtual probe," Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

Hopkins, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Hu, B.

B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
[CrossRef] [PubMed]

Hu, X.

C. Ding, X. Hu, P. Jiang, and Q. Gong, "Tunable surface plasmon polariton microcavity," Phys. Rev. A 372, 4536-4538 (2008).

Inouye, Y.

Janunts, N. A.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

Jelena, V.

G. Yiyang and V. Jelena, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113-1-3 (2007).

Jiang, P.

C. Ding, X. Hu, P. Jiang, and Q. Gong, "Tunable surface plasmon polariton microcavity," Phys. Rev. A 372, 4536-4538 (2008).

Jin, E. X.

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110-1-3 (2006).
[CrossRef]

Kawata, S.

Kelf, T. A.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Krenn, J. R.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
[CrossRef] [PubMed]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Lalanne, P.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Leitner, A.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
[CrossRef] [PubMed]

Li, D.

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical and experimental research on the near-field optical virtual probe," Scanning 26, 57-62 (2004).

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical simulation analysis of a near-field optical virtual probe," Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

Liu, J.

B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
[CrossRef] [PubMed]

Lopata, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Mahajan, S.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Michael, W. V.

K. G. Dmitri, F. P. P. David, W. V. Michael, and Z. Xiang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75, 035431-1-5 (2007).

Murray, C. A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Nathan, C. L.

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator," Appl. Phys. Lett. 91, 253105-1-3 (2007).

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors," Phys. Rev. B 76, 155109-1-5 (2007).

Nerkararyan, K. V.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

Novotny, L.

Paeder, V.

Partovi, A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Peale, D.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Peyrade, D.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
[CrossRef]

Pohl, D. W.

L. Novotny, D. W. Pohl, and B. Hecht, "Scanning Near-Field Optical Probe With Ultrasmall Spot Size," Opt. Lett. 20, 970-972 (1995).
[CrossRef] [PubMed]

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Russell, A. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Sang-Hyun, O.

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator," Appl. Phys. Lett. 91, 253105-1-3 (2007).

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors," Phys. Rev. B 76, 155109-1-5 (2007).

Schider, G.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
[CrossRef] [PubMed]

Senlik, S. S.

K. Askin, S. S. Senlik, and A. Atilla, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130-1-7 (2008).

Silberstein, E.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
[CrossRef]

Stepanov, A. L.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

Stockman, M. I.

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004).
[CrossRef]

Sugawara, Y.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

Sun, L.

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical and experimental research on the near-field optical virtual probe," Scanning 26, 57-62 (2004).

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical simulation analysis of a near-field optical virtual probe," Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

Sun, X.-d.

B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
[CrossRef] [PubMed]

Talneau, A.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Vaccaro, L.

Van Labeke, D.

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107-1-3 (2005).

Wang, G. P.

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107-1-3 (2005).

Wang, J.

Q. Wang, J. Wang, and S. Zhang, "Confined optical field based on surface plasmon polaritons and the interactions with nano-spheres," J. Opt. Soc. Am. B 25, 1096-1104 (2008).
[CrossRef]

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical and experimental research on the near-field optical virtual probe," Scanning 26, 57-62 (2004).

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical simulation analysis of a near-field optical virtual probe," Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

Wang, Q.

Wang, S.-q.

B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
[CrossRef] [PubMed]

Weeber, J. C.

J. C. Weeber, A. Bouhelier, G. ColasdesFrancs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano. Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

J. C. Weeber, A. Bouhelier, G. C. d. Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, "Surface-plasmon hopping along coupled coplanar cavities," Phys. Rev. B 76, 113405-1-4 (2007).
[CrossRef]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O. Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Wuttig, M.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Wynn, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Xiang, Z.

K. G. Dmitri, F. P. P. David, W. V. Michael, and Z. Xiang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75, 035431-1-5 (2007).

Xu, X.

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110-1-3 (2006).
[CrossRef]

Yeh, J. H. J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Yiyang, G.

G. Yiyang and V. Jelena, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113-1-3 (2007).

Zenhausern, F.

F. Zenhausern, M. P. O. Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Zhang, S.

Zydzik, G.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Appl. Phys. Lett. (9)

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110-1-3 (2006).
[CrossRef]

F. Zenhausern, M. P. O. Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical simulation analysis of a near-field optical virtual probe," Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107-1-3 (2005).

G. Yiyang and V. Jelena, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113-1-3 (2007).

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator," Appl. Phys. Lett. 91, 253105-1-3 (2007).

J. Appl. Phys. (1)

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

J. Microsc. (3)

T. Grosjean and D. Courjon, "Immaterial tip concept by light confinement," J. Microsc. 202, 273-278 (2001).
[CrossRef] [PubMed]

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microsc. 209, 167-172 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. (1)

B. Hu, J. Liu, B.-y. Gu, S. Di, X.-d. Sun, and S.-q. Wang, "Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons," J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 24, A1-6 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nano. Lett. (1)

J. C. Weeber, A. Bouhelier, G. ColasdesFrancs, L. Markey, and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano. Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

C. Ding, X. Hu, P. Jiang, and Q. Gong, "Tunable surface plasmon polariton microcavity," Phys. Rev. A 372, 4536-4538 (2008).

Phys. Rev. B (7)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

J. C. Weeber, A. Bouhelier, G. C. d. Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, "Surface-plasmon hopping along coupled coplanar cavities," Phys. Rev. B 76, 113405-1-4 (2007).
[CrossRef]

K. Askin, S. S. Senlik, and A. Atilla, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130-1-7 (2008).

C. L. Nathan, L. Antoine, and O. Sang-Hyun, "Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors," Phys. Rev. B 76, 155109-1-5 (2007).

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Phys. Rev. B 74, 245415-1-12 (2006).
[CrossRef]

K. G. Dmitri, F. P. P. David, W. V. Michael, and Z. Xiang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75, 035431-1-5 (2007).

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, and M. U. González and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406-1-12 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004).
[CrossRef]

Phys.Rev. B (1)

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys.Rev. B 73, 155416-1-13 (2006).
[CrossRef]

Scanning (1)

T. Hong, J. Wang, L. Sun, and D. Li, "Numerical and experimental research on the near-field optical virtual probe," Scanning 26, 57-62 (2004).

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Other (2)

Q. Wang, J. Wang, and S. Zhang, "Confined optical fields based on surface plasmon polaritons," Proc. SPIE 6831, 68310T-1-6 (2007).

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge U. Press, Cambridge, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

EM image and schematic diagram of the structures characterized by the period of the rings of a=310nm. The depth and the width of the rings (except the innermost one) are 20nm and 100nm, respectively. The parameters used in the definition of the cavity and the innermost ring are also shown.

Fig. 2.
Fig. 2.

Experimental setup used to excite SPPs and measure the near-field distributions.

Fig. 3.
Fig. 3.

Intensity distributions of the SPP field on the smooth gold film excited by linear polarized focused hollow beam. The polarization direction of the illumination is indicated by the double arrow. (a) Calculated distribution of |E|2 on the film surface (Normalized). (b) Calculated distribution of |Ez |2 on the film surface (Normalized). (c) Near-field image with the tip-surface distance of ~5nm (Normalized). (d) Cross-sections of the SPP field, as indicated by the dashed lines in (a), (b) and (c).

Fig. 4.
Fig. 4.

Intensity distribution of the SPP field on the surface of Structure 1 with a=310nm, L=465nm, d=20nm and w=100nm. (a) Near-field image with the tip-sample distance of ~5nm. The polarization direction of the illumination is indicated by the double arrow. (b) Cross-section of (a), as indicated by the dashed line.

Fig. 5.
Fig. 5.

Numerical investigations of the influences of the depth and the width of the innermost groove (described as d and w, respectively). L=1.5a and the distance between the sample surface and the calculation plane is 200nm. (a) Maximal intensity of the central peak P and sidelobe suppression r versus d with w=100nm. (b) P and r versus w with d=30nm.

Fig. 6.
Fig. 6.

Intensity distribution of the SPP field on the surface of Structure 2 with a=310nm, L=465nm, d=30nm and w=155nm. (a) Near-field image with the tip-sample distance of ~5nm. The polarization direction of the illumination is indicated by the double arrow. (b) Cross-section of (a), as indicated by the dashed line.

Fig. 7.
Fig. 7.

Variations of the three near-field parameters versus the tip-sample distance. (a) FWHM of the central peak versus the distance. (b) The maximal intensity of the central peak P versus the distance. (c) The sidelobe suppression r versus the distance.

Fig. 8.
Fig. 8.

The calculated reflectivity spectrum of the two structures.

Tables (1)

Tables Icon

Table. 1 The measured near-field parameters of the two structures with the tip-sample distance of ~5nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k SPP a = π .
r = ( E s E c ) × 100 % .
L = ( 2 n + 1 ) 2 a , n = 1 , 2 , 3 .

Metrics