Abstract

Based on medium-tuned optical field enhancement effect around a self-assembled particle-lens array (PLA) irradiated with a femtosecond (fs) laser source, we demonstrated that high-precision periodical array of micro/nano-structures can be readily fabricated on glass surface or inside glass in large areas in parallel without any cracks or debris. The technique has potential for rapid fabrication of three-dimensional structures in multiple layers inside glass.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA)

Wei Jia, Yiming Luo, Jian Yu, Bowen Liu, Minglie Hu, Lu Chai, and Chingyue Wang
Opt. Express 23(21) 26932-26939 (2015)

Extraordinary laser-induced swelling of oxide glasses

Richard Grzybowski, Stephan Logunov, Alexander Streltsov, and James Sutherland
Opt. Express 17(7) 5058-5068 (2009)

Self-assembled high NA microlens arrays using global dielectricphoretic energy wells

Jing-Yi Huang, Yen-Sheng Lu, and J. Andrew Yeh
Opt. Express 14(22) 10779-10784 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
    [Crossref]
  2. S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83, 758–760 (2003).
    [Crossref]
  3. R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89, 223113.1–223113.3 (2006).
    [Crossref]
  4. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
    [Crossref]
  5. H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197–1204 (2004).
    [Crossref]
  6. S. M. Huang, M. H. Hong, B. Lukiyanchuk, and T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–295 (2003).
  7. B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
    [Crossref]
  8. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
    [Crossref]
  9. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
    [Crossref]
  10. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig)  25, 377–445 (1908).
    [Crossref]
  11. Z. B. Wang, Optical resonance and near field effects: small particles under laser irradiation, Normal, Ph.D thesis (National University of Singapore, Singapore, 2005).
  12. C. Hafner, The Generalized Multiple Multipole Technique for Computational Electromagnetics (Artech, Boston, 1990).
  13. W. H. Yang, G. C. Schatz, and R. P. Vanduyne, “Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes,” J. Chem. Phys. 103, 869–875 (1995).
    [Crossref]
  14. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed., (John Wiley & Sons, New York, 2002).
  15. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  16. T. Weiland, “Time Domain Electromagnetic Field Computation with Finite Difference Methods,” Int. J. Numer. Modelling 9, 295–319 (1996).
    [Crossref]
  17. Computer Simulation Technology: CST Microwave Studio (http://www.cst.com); Remote license access provided by one of the author B.S. Lukiyanchuk in DSI, Singapore, (2007).
  18. Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
    [Crossref]
  19. Y. Hayasaki and D. Kawamura, “High-density bump formation on a glass surface using femtosecond laser processing in water,” Appl. Phys. A 87, 691–695 (2007).
    [Crossref]
  20. W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
    [Crossref]

2008 (3)

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
[Crossref]

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
[Crossref]

2007 (2)

Y. Hayasaki and D. Kawamura, “High-density bump formation on a glass surface using femtosecond laser processing in water,” Appl. Phys. A 87, 691–695 (2007).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
[Crossref]

2006 (2)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89, 223113.1–223113.3 (2006).
[Crossref]

2005 (1)

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[Crossref]

2004 (2)

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197–1204 (2004).
[Crossref]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[Crossref]

2003 (2)

S. M. Huang, M. H. Hong, B. Lukiyanchuk, and T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–295 (2003).

S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83, 758–760 (2003).
[Crossref]

1996 (1)

T. Weiland, “Time Domain Electromagnetic Field Computation with Finite Difference Methods,” Int. J. Numer. Modelling 9, 295–319 (1996).
[Crossref]

1995 (1)

W. H. Yang, G. C. Schatz, and R. P. Vanduyne, “Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes,” J. Chem. Phys. 103, 869–875 (1995).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig)  25, 377–445 (1908).
[Crossref]

Adachi, Y.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[Crossref]

Baird, R. J.

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89, 223113.1–223113.3 (2006).
[Crossref]

Chao, C. K.

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197–1204 (2004).
[Crossref]

Chen, S.

S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83, 758–760 (2003).
[Crossref]

Chong, T. C.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

S. M. Huang, M. H. Hong, B. Lukiyanchuk, and T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–295 (2003).

Fuh, J. Y. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

Guo, W.

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
[Crossref]

Hafner, C.

C. Hafner, The Generalized Multiple Multipole Technique for Computational Electromagnetics (Artech, Boston, 1990).

Hayasaki, Y.

Y. Hayasaki and D. Kawamura, “High-density bump formation on a glass surface using femtosecond laser processing in water,” Appl. Phys. A 87, 691–695 (2007).
[Crossref]

Hirao, K.

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

Hong, M. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[Crossref]

S. M. Huang, M. H. Hong, B. Lukiyanchuk, and T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–295 (2003).

Huang, S. M.

S. M. Huang, M. H. Hong, B. Lukiyanchuk, and T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–295 (2003).

Jin, J. M.

J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed., (John Wiley & Sons, New York, 2002).

Kato, J.-I.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[Crossref]

Kawamura, D.

Y. Hayasaki and D. Kawamura, “High-density bump formation on a glass surface using femtosecond laser processing in water,” Appl. Phys. A 87, 691–695 (2007).
[Crossref]

Kawata, S.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[Crossref]

Li, L.

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
[Crossref]

Lin, C. P.

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197–1204 (2004).
[Crossref]

Liu, Z.

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
[Crossref]

Lu, L.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

Luk’yanchuk, B. S.

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[Crossref]

Lukiyanchuk, B.

S. M. Huang, M. H. Hong, B. Lukiyanchuk, and T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–295 (2003).

Lukiyanchuk, B.S.

Computer Simulation Technology: CST Microwave Studio (http://www.cst.com); Remote license access provided by one of the author B.S. Lukiyanchuk in DSI, Singapore, (2007).

Lukyanchuk, B. S.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig)  25, 377–445 (1908).
[Crossref]

Miura, K.

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

Piparia, R.

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89, 223113.1–223113.3 (2006).
[Crossref]

Qiu, H. R.

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

Rothe, E. W.

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89, 223113.1–223113.3 (2006).
[Crossref]

Schatz, G. C.

W. H. Yang, G. C. Schatz, and R. P. Vanduyne, “Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes,” J. Chem. Phys. 103, 869–875 (1995).
[Crossref]

Shi, L. P.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

Song, W. D.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[Crossref]

Sun, H.-B.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[Crossref]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Takeyasu, N.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[Crossref]

Theppakuttai, S.

S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83, 758–760 (2003).
[Crossref]

Vanduyne, R. P.

W. H. Yang, G. C. Schatz, and R. P. Vanduyne, “Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes,” J. Chem. Phys. 103, 869–875 (1995).
[Crossref]

Wang, Z. B.

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[Crossref]

Z. B. Wang, Optical resonance and near field effects: small particles under laser irradiation, Normal, Ph.D thesis (National University of Singapore, Singapore, 2005).

Wei, M. K.

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197–1204 (2004).
[Crossref]

Weiland, T.

T. Weiland, “Time Domain Electromagnetic Field Computation with Finite Difference Methods,” Int. J. Numer. Modelling 9, 295–319 (1996).
[Crossref]

Whitehead, D. J.

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
[Crossref]

Yang, H.

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197–1204 (2004).
[Crossref]

Yang, W. H.

W. H. Yang, G. C. Schatz, and R. P. Vanduyne, “Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes,” J. Chem. Phys. 103, 869–875 (1995).
[Crossref]

Zhou, Y.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
[Crossref]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig)  25, 377–445 (1908).
[Crossref]

Appl. Phys. A (3)

Y. Hayasaki and D. Kawamura, “High-density bump formation on a glass surface using femtosecond laser processing in water,” Appl. Phys. A 87, 691–695 (2007).
[Crossref]

S. M. Huang, M. H. Hong, B. Lukiyanchuk, and T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–295 (2003).

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[Crossref]

Appl. Phys. Lett. (5)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Appl. Phys. Lett. 88, 023110 (2006).
[Crossref]

S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83, 758–760 (2003).
[Crossref]

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89, 223113.1–223113.3 (2006).
[Crossref]

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).
[Crossref]

Int. J. Numer. Modelling (1)

T. Weiland, “Time Domain Electromagnetic Field Computation with Finite Difference Methods,” Int. J. Numer. Modelling 9, 295–319 (1996).
[Crossref]

J. Alloys Compd. (1)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” J. Alloys Compd. 449, 246–249 (2008).
[Crossref]

J. Chem. Phys. (1)

W. H. Yang, G. C. Schatz, and R. P. Vanduyne, “Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes,” J. Chem. Phys. 103, 869–875 (1995).
[Crossref]

J. Laser Micro/Nanoeng. (1)

Z. B. Wang, W. Guo, B. S. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighboring Micro/Nano-particles,” J. Laser Micro/Nanoeng. 3, 14–18 (2008).
[Crossref]

J. Micromech. Microeng. (1)

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197–1204 (2004).
[Crossref]

J. Non-Cryst. Solids (1)

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

Other (5)

J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed., (John Wiley & Sons, New York, 2002).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Z. B. Wang, Optical resonance and near field effects: small particles under laser irradiation, Normal, Ph.D thesis (National University of Singapore, Singapore, 2005).

C. Hafner, The Generalized Multiple Multipole Technique for Computational Electromagnetics (Artech, Boston, 1990).

Computer Simulation Technology: CST Microwave Studio (http://www.cst.com); Remote license access provided by one of the author B.S. Lukiyanchuk in DSI, Singapore, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Cross-sectional view of the normalized local field distribution (|E|2) underneath a single 5.0 µm particle in (a) air and (b) immersed in water medium. The incident laser (λ=800 nm) beam is linearly polarized along x-axis and propagates along z-axis.

Fig. 2.
Fig. 2.

Cross-sectional view of normalized local field distribution (|E|2) underneath a hexagonal array of 5.0 µm particles deposited on Quartz substrate (a) in air and (b) immersed in water. The incident beam has a wavelength of 800 nm and is polarized along horizontal-direction. The refractive index of quartz and spheres are same as 1.45332, and 1.326 for water. (c) the electric field on substrate surface just under the particles.

Fig. 3.
Fig. 3.

Atomic Force Microscopy (AFM) images of hexagonal array of (a) ring-bumps and (b) convex bumps generated on quartz surface immersed inside water after a single femtosecond laser pulse irradiation at a pulse energy of 0.20 mJ and 0.88 mJ through a self-assembled 5.0 µm SiO2 particle array, respectively.

Metrics