Abstract

This paper addresses a passive system capable of converting a linearly polarized THz beam into a radially polarized one. This is obtained by extending to THz frequencies and waveguides an already proven concept based on mode selection in optical fibers. The approach is validated at 0.1 THz owing to the realization of a prototype involving a circular waveguide and two tapers that exhibits a radially polarized beam at its output. By a simple homothetic size reduction, the system can be easily adapted to higher THz frequencies.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. De Lucia, Sensing with Terahertz radiation, chap. Spectroscopy in the Terahertz spectral region, pp. 39-115 (Springer Series of Optical Science, Springer, Berlin, 2003).
  2. A. Markelz, A. Roitberg, and E. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz," Chem. Phys. Lett. 320, 42-48 (2000).
    [CrossRef]
  3. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing Light to a Tighter Spot," Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  4. K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  5. L. Helseth, "Roles of Polarization, Phase and Amplitude in Solid Immersion Lens Systems," Opt. Commun. 191, 161-172 (2001).
    [CrossRef]
  6. C. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322- 4327 (2004).
    [CrossRef] [PubMed]
  7. T. Grosjean and D. Courjon, "Smallest focal spots," Opt. Commun. 272, 314-319 (2007).
    [CrossRef]
  8. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  9. A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microsc. 210, 220-224 (2002).
    [CrossRef]
  10. E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
    [CrossRef]
  11. V. Niziev and A. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1561 (1999).
    [CrossRef]
  12. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004).
    [CrossRef] [PubMed]
  13. J. Fontana and R. Pantell, "A high-energy, laser accelerator for electrons using the inverse Cherenkov effect," J. Appl. Phys. 54, 4285-4288 (1983).
    [CrossRef]
  14. M. Roth, E. Wyss, H. Glur, and H. Weber, "Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens," Opt. Lett. 30, 1665-1667 (2005).
    [CrossRef] [PubMed]
  15. I. Moshe, S. Jackel, and A. Meir, "Production of of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects," Opt. Lett. 28, 807-809 (2003).
    [CrossRef] [PubMed]
  16. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233,901 (2003).
    [CrossRef]
  17. K. Wang and D. Mittelman, "Metal wires for terahertz waveguiding," Nature 432, 373-379 (2004).
    [CrossRef]
  18. J. Deibel, K. Wang, M. Escarra, and D. Mittelman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006).
    [CrossRef] [PubMed]
  19. Q. Cao and J. Jahns, "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005).
    [CrossRef] [PubMed]
  20. G. Chang, C. Divin, C.-H. Liu, S. Williamson, A. Galvanauskas, and T. Norris, "Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification," Opt. Lett. 32, 433-435 (2007).
    [CrossRef] [PubMed]
  21. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
    [CrossRef]
  22. K. Wang, D. Mittleman, N. van der Valk, and P. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
    [CrossRef]
  23. N. van der Valk and P. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
    [CrossRef]
  24. H.-T. Chen, R. Kersting, and G. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
    [CrossRef]
  25. H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267,401 (2004).
    [CrossRef]
  26. R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, "Terahertz microscopy with submicrometre resolution," J. Opt. A: Pure and Applied Optics 7, S184-S189 (2005).
    [CrossRef]
  27. R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
    [CrossRef]
  28. Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
    [CrossRef]
  29. J.-L. Li, K.-I. Ueda, M. Musha, A. Shirakawa, and L.-X. Zhong, "Generation of radially polarized mode in Yb fiber laser by using dual conical prism," Opt. Lett. 31, 2969-2971 (2006).
    [CrossRef] [PubMed]
  30. Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
    [CrossRef] [PubMed]
  31. R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
    [CrossRef]
  32. D. Pohl, "Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01," Appl. Phys. Lett. 20, 266-267 (1972).
    [CrossRef]
  33. K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal," Opt. Lett. 31, 2151-2153 (2006).
    [CrossRef] [PubMed]
  34. A. Nesterov, V. Niziev, and V. Yakunin, "Generation of High-Power Radially Polarized Beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
    [CrossRef]
  35. T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
    [CrossRef]
  36. S. Tidwell, D. Ford, and W. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  37. S. Tidwell, G. Kim, and W. Kimura, "Efficient radially polarized laser beam generation with a double interferometer," Appl. Opt. 32, 5222-5229 (1993).
    [CrossRef] [PubMed]
  38. N. Passilly, D. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, "Simple interferometric technique for generation of a radially polarized light beam," J. Opt. Soc. Am. A 22, 984-991 (2005).
    [CrossRef]
  39. E. Churin, J. Hosfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer Generated Holograms," Opt. Commun. 99, 13-17 (1993).
    [CrossRef]
  40. M. Stalder and M. Schadt, "Linearly Polarized Light with Axial Symmetry Generated by Liquid-Crystal Polarization Converters," Opt. Lett. 21, 1948-1950 (1996).
    [CrossRef] [PubMed]
  41. M. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, "Method for the generation of arbitrary complex vector wave front," Opt. Lett. 27, 1929-1931 (2002).
    [CrossRef]
  42. R. Hongwen, L. Yi-Hsin, and W. Shin-Tson, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051,114 (2006).
  43. K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091,103 (2006).
    [CrossRef]
  44. T. Grosjean, D. Courjon, and M. Spajer, "An All-Fiber Device for Generating Radially and Other Polarized Light Beams," Opt. Commun. 203, 1-5 (2002).
    [CrossRef]
  45. G. Volpe and D. Petrov, "Generation of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams," Opt. Commun. 237, 89-95 (2004).
    [CrossRef]
  46. T. Grosjean, A. Sabac, and D. Courjon, "A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations," Opt. Commun. 252, 12-21 (2005).
    [CrossRef]
  47. M. Ordal, R. Bell, R. Alexander, L. Newquist, and M. Querry, "Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths," Appl. Opt. 27, 1203-1209 (1988).
    [CrossRef] [PubMed]
  48. M. Ordal, R. J. Bell, R. Alexander, L. Long, and M. R. Querry, "Optical properties of Au, Ni, and Pb at submillimeter wavelengths," Appl. Opt. 26, 744-752 (1987).
    [CrossRef] [PubMed]
  49. A. Azad, Y. Zhao, W. Zhang, and M. He, "Effect of dielectric properties of metals on terahertz transmission through subwavelength hole arrays," Opt. Lett. 31, 2637-2639 (2006).
    [CrossRef] [PubMed]
  50. D. Marcuse, Light Transmission Optics, chap. 8, pp. 293-294 (New York: Van Nostrand Reinhold, 1972).
  51. B. Davidson and R. Ziolkowski, "Body-of-revolution finite-difference time-domain Modeling of space-time Focusing by a three-dimensional Lens," J. Opt. Soc. Am. A 11, 1471-1490 (1994).
    [CrossRef]
  52. F. Baida, D. Labeke, and Y. Pagani, "Body-of-Revolution FDTD Simulations of Improved Tip Performance for Scanning Near-Field Optical Microscopes," Opt. Commun. 255, 241-252 (2003).
    [CrossRef]
  53. R. Oron, Y. Danziger, N. Davidson, A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
    [CrossRef]
  54. F. Baida, D. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004).
    [CrossRef]
  55. F. Baida, A. Belkhir, D. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205,419 (2006).
    [CrossRef]
  56. N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A metal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910 (2005).
    [CrossRef]

2007

2006

R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
[CrossRef]

J.-L. Li, K.-I. Ueda, M. Musha, A. Shirakawa, and L.-X. Zhong, "Generation of radially polarized mode in Yb fiber laser by using dual conical prism," Opt. Lett. 31, 2969-2971 (2006).
[CrossRef] [PubMed]

K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal," Opt. Lett. 31, 2151-2153 (2006).
[CrossRef] [PubMed]

J. Deibel, K. Wang, M. Escarra, and D. Mittelman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

R. Hongwen, L. Yi-Hsin, and W. Shin-Tson, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051,114 (2006).

K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091,103 (2006).
[CrossRef]

A. Azad, Y. Zhao, W. Zhang, and M. He, "Effect of dielectric properties of metals on terahertz transmission through subwavelength hole arrays," Opt. Lett. 31, 2637-2639 (2006).
[CrossRef] [PubMed]

F. Baida, A. Belkhir, D. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205,419 (2006).
[CrossRef]

2005

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A metal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910 (2005).
[CrossRef]

T. Grosjean, A. Sabac, and D. Courjon, "A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations," Opt. Commun. 252, 12-21 (2005).
[CrossRef]

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, "Terahertz microscopy with submicrometre resolution," J. Opt. A: Pure and Applied Optics 7, S184-S189 (2005).
[CrossRef]

N. Passilly, D. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, "Simple interferometric technique for generation of a radially polarized light beam," J. Opt. Soc. Am. A 22, 984-991 (2005).
[CrossRef]

Q. Cao and J. Jahns, "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005).
[CrossRef] [PubMed]

M. Roth, E. Wyss, H. Glur, and H. Weber, "Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens," Opt. Lett. 30, 1665-1667 (2005).
[CrossRef] [PubMed]

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
[CrossRef] [PubMed]

2004

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267,401 (2004).
[CrossRef]

K. Wang, D. Mittleman, N. van der Valk, and P. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004).
[CrossRef] [PubMed]

K. Wang and D. Mittelman, "Metal wires for terahertz waveguiding," Nature 432, 373-379 (2004).
[CrossRef]

E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

C. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322- 4327 (2004).
[CrossRef] [PubMed]

G. Volpe and D. Petrov, "Generation of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams," Opt. Commun. 237, 89-95 (2004).
[CrossRef]

F. Baida, D. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

2003

F. Baida, D. Labeke, and Y. Pagani, "Body-of-Revolution FDTD Simulations of Improved Tip Performance for Scanning Near-Field Optical Microscopes," Opt. Commun. 255, 241-252 (2003).
[CrossRef]

I. Moshe, S. Jackel, and A. Meir, "Production of of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects," Opt. Lett. 28, 807-809 (2003).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233,901 (2003).
[CrossRef]

H.-T. Chen, R. Kersting, and G. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

2002

N. van der Valk and P. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microsc. 210, 220-224 (2002).
[CrossRef]

T. Grosjean, D. Courjon, and M. Spajer, "An All-Fiber Device for Generating Radially and Other Polarized Light Beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

M. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, "Method for the generation of arbitrary complex vector wave front," Opt. Lett. 27, 1929-1931 (2002).
[CrossRef]

2001

L. Helseth, "Roles of Polarization, Phase and Amplitude in Solid Immersion Lens Systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

2000

A. Markelz, A. Roitberg, and E. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing Light to a Tighter Spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

1999

A. Nesterov, V. Niziev, and V. Yakunin, "Generation of High-Power Radially Polarized Beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

V. Niziev and A. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1561 (1999).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

1996

1994

1993

E. Churin, J. Hosfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

S. Tidwell, G. Kim, and W. Kimura, "Efficient radially polarized laser beam generation with a double interferometer," Appl. Opt. 32, 5222-5229 (1993).
[CrossRef] [PubMed]

1990

1988

1987

1983

J. Fontana and R. Pantell, "A high-energy, laser accelerator for electrons using the inverse Cherenkov effect," J. Appl. Phys. 54, 4285-4288 (1983).
[CrossRef]

1972

D. Pohl, "Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01," Appl. Phys. Lett. 20, 266-267 (1972).
[CrossRef]

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Aeschimann, L.

E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

Ahmed, M.

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Aït-Ameur, K.

Alexander, R.

Azad, A.

Baida, F.

F. Baida, A. Belkhir, D. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205,419 (2006).
[CrossRef]

F. Baida, D. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

F. Baida, D. Labeke, and Y. Pagani, "Body-of-Revolution FDTD Simulations of Improved Tip Performance for Scanning Near-Field Optical Microscopes," Opt. Commun. 255, 241-252 (2003).
[CrossRef]

Barbey, N.

R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
[CrossRef]

Belkhir, A.

F. Baida, A. Belkhir, D. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205,419 (2006).
[CrossRef]

F. Baida, D. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

Bell, R.

Bell, R. J.

Beversluis, M.

A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microsc. 210, 220-224 (2002).
[CrossRef]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Blit, S.

R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Boccara, A.-C.

R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Bouhelier, A.

A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microsc. 210, 220-224 (2002).
[CrossRef]

Brown, T.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

Cao, Q.

Chang, G.

Chen, H.-T.

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, "Terahertz microscopy with submicrometre resolution," J. Opt. A: Pure and Applied Optics 7, S184-S189 (2005).
[CrossRef]

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267,401 (2004).
[CrossRef]

H.-T. Chen, R. Kersting, and G. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Cheong, W.

K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091,103 (2006).
[CrossRef]

Cho, G.

H.-T. Chen, R. Kersting, and G. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Cho, G. C.

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, "Terahertz microscopy with submicrometre resolution," J. Opt. A: Pure and Applied Optics 7, S184-S189 (2005).
[CrossRef]

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267,401 (2004).
[CrossRef]

Choudhury, A.

Churin, E.

E. Churin, J. Hosfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Courjon, D.

T. Grosjean and D. Courjon, "Smallest focal spots," Opt. Commun. 272, 314-319 (2007).
[CrossRef]

T. Grosjean, A. Sabac, and D. Courjon, "A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations," Opt. Commun. 252, 12-21 (2005).
[CrossRef]

T. Grosjean, D. Courjon, and M. Spajer, "An All-Fiber Device for Generating Radially and Other Polarized Light Beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

Danziger, Y.

R. Oron, Y. Danziger, N. Davidson, A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

Davidson, B.

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

de Saint Denis, D.

Deibel, J.

Descrovi, E.

E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

Divin, C.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233,901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing Light to a Tighter Spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing Light to a Tighter Spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Escarra, M.

Fontana, J.

J. Fontana and R. Pantell, "A high-energy, laser accelerator for electrons using the inverse Cherenkov effect," J. Appl. Phys. 54, 4285-4288 (1983).
[CrossRef]

Ford, D.

Friesem, A.

R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

Galvanauskas, A.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing Light to a Tighter Spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Glur, H.

M. Roth, E. Wyss, H. Glur, and H. Weber, "Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens," Opt. Lett. 30, 1665-1667 (2005).
[CrossRef] [PubMed]

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Graf, T.

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Granet, G.

F. Baida, D. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

Grésillon, S.

R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
[CrossRef]

Grosjean, T.

T. Grosjean and D. Courjon, "Smallest focal spots," Opt. Commun. 272, 314-319 (2007).
[CrossRef]

T. Grosjean, A. Sabac, and D. Courjon, "A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations," Opt. Commun. 252, 12-21 (2005).
[CrossRef]

T. Grosjean, D. Courjon, and M. Spajer, "An All-Fiber Device for Generating Radially and Other Polarized Light Beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

He, M.

Heilweil, E.

A. Markelz, A. Roitberg, and E. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

Helseth, L.

L. Helseth, "Roles of Polarization, Phase and Amplitude in Solid Immersion Lens Systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Herzig, H.

E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

Hierle, R.

Hongwen, R.

R. Hongwen, L. Yi-Hsin, and W. Shin-Tson, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051,114 (2006).

Hosfeld, J.

E. Churin, J. Hosfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Jackel, S.

Jahns, J.

Juskaitis, R.

Kadlec, F.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A metal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910 (2005).
[CrossRef]

Karpowicz, N.

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, "Terahertz microscopy with submicrometre resolution," J. Opt. A: Pure and Applied Optics 7, S184-S189 (2005).
[CrossRef]

Keilmann, F.

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Kersting, R.

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, "Terahertz microscopy with submicrometre resolution," J. Opt. A: Pure and Applied Optics 7, S184-S189 (2005).
[CrossRef]

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267,401 (2004).
[CrossRef]

H.-T. Chen, R. Kersting, and G. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Kim, G.

Kimura, W.

Klein, N.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A metal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910 (2005).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Kozawa, Y.

Kraatz, S.

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267,401 (2004).
[CrossRef]

Kuzel, P.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A metal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910 (2005).
[CrossRef]

Labeke, D.

F. Baida, A. Belkhir, D. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205,419 (2006).
[CrossRef]

F. Baida, D. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

F. Baida, D. Labeke, and Y. Pagani, "Body-of-Revolution FDTD Simulations of Improved Tip Performance for Scanning Near-Field Optical Microscopes," Opt. Commun. 255, 241-252 (2003).
[CrossRef]

Lahl, P.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A metal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910 (2005).
[CrossRef]

Lamrous, O.

F. Baida, A. Belkhir, D. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205,419 (2006).
[CrossRef]

Lecaque, R.

R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233,901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing Light to a Tighter Spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Li, J.-L.

Liu, C.-H.

Long, L.

Markelz, A.

A. Markelz, A. Roitberg, and E. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

Massoumian, F.

Matsumura, K.

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Meir, A.

Mittelman, D.

Mittleman, D.

K. Wang, D. Mittleman, N. van der Valk, and P. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

Moh, K.

K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091,103 (2006).
[CrossRef]

Moreau, A.

F. Baida, D. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

Moser, T.

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Moshe, I.

Musha, M.

Mushiake, Y.

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Nakagawa, W.

E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

Nakajima, N.

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Neil, M.

Nesterov, A.

A. Nesterov, V. Niziev, and V. Yakunin, "Generation of High-Power Radially Polarized Beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

V. Niziev and A. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1561 (1999).
[CrossRef]

Newquist, L.

Niziev, V.

V. Niziev and A. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1561 (1999).
[CrossRef]

A. Nesterov, V. Niziev, and V. Yakunin, "Generation of High-Power Radially Polarized Beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

Norris, T.

Novotny, L.

A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microsc. 210, 220-224 (2002).
[CrossRef]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Ordal, M.

Oron, R.

R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

Pagani, Y.

F. Baida, D. Labeke, and Y. Pagani, "Body-of-Revolution FDTD Simulations of Improved Tip Performance for Scanning Near-Field Optical Microscopes," Opt. Commun. 255, 241-252 (2003).
[CrossRef]

Pantell, R.

J. Fontana and R. Pantell, "A high-energy, laser accelerator for electrons using the inverse Cherenkov effect," J. Appl. Phys. 54, 4285-4288 (1983).
[CrossRef]

Parriaux, O.

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Passilly, N.

Perreti, R.

R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
[CrossRef]

Petrov, D.

G. Volpe and D. Petrov, "Generation of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams," Opt. Commun. 237, 89-95 (2004).
[CrossRef]

Pigeon, F.

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Planken, P.

K. Wang, D. Mittleman, N. van der Valk, and P. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

N. van der Valk and P. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

Pohl, D.

D. Pohl, "Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01," Appl. Phys. Lett. 20, 266-267 (1972).
[CrossRef]

Poppe, U.

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A metal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910 (2005).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233,901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing Light to a Tighter Spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Querry, M.

Querry, M. R.

Renger, J.

A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microsc. 210, 220-224 (2002).
[CrossRef]

Rivoal, J.-C.

R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
[CrossRef]

Roch, J.-F.

Roitberg, A.

A. Markelz, A. Roitberg, and E. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

Romano, V.

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Roth, M.

Sabac, A.

T. Grosjean, A. Sabac, and D. Courjon, "A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations," Opt. Commun. 252, 12-21 (2005).
[CrossRef]

Sato, S.

Schadt, M.

Sheppard, C.

Shin-Tson, W.

R. Hongwen, L. Yi-Hsin, and W. Shin-Tson, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051,114 (2006).

Shirakawa, A.

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, "An All-Fiber Device for Generating Radially and Other Polarized Light Beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

Stalder, M.

Staufer, U.

E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

Tang, D.

K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091,103 (2006).
[CrossRef]

Tidwell, S.

Treussart, F.

Tschudi, T.

E. Churin, J. Hosfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Ueda, K.-I.

Vaccaro, L.

E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

van der Valk, N.

K. Wang, D. Mittleman, N. van der Valk, and P. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

N. van der Valk and P. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

Volpe, G.

G. Volpe and D. Petrov, "Generation of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams," Opt. Commun. 237, 89-95 (2004).
[CrossRef]

Wang, K.

J. Deibel, K. Wang, M. Escarra, and D. Mittelman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

K. Wang and D. Mittelman, "Metal wires for terahertz waveguiding," Nature 432, 373-379 (2004).
[CrossRef]

K. Wang, D. Mittleman, N. van der Valk, and P. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

Weber, H.

Williamson, S.

Wilson, T.

Wyss, E.

Yakunin, V.

A. Nesterov, V. Niziev, and V. Yakunin, "Generation of High-Power Radially Polarized Beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

Yi-Hsin, L.

R. Hongwen, L. Yi-Hsin, and W. Shin-Tson, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051,114 (2006).

Yonezawa, K.

Youngworth, K.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

Yuan, X.-C.

K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091,103 (2006).
[CrossRef]

Zhan, Q.

Zhang, L.

K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091,103 (2006).
[CrossRef]

Zhang, W.

Zhao, Y.

Zhong, L.-X.

Ziolkowski, R.

Appl. Opt.

Appl. Phys. B

T. Moser, H. Glur, V. Romano, M. Ahmed, F. Pigeon, O. Parriaux, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

F. Baida, D. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

Appl. Phys. Lett.

R. Oron, Y. Danziger, N. Davidson, A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

R. Hongwen, L. Yi-Hsin, and W. Shin-Tson, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051,114 (2006).

K. Moh, X.-C. Yuan, D. Tang, W. Cheong, and L. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091,103 (2006).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. Friesem, Z. Bomzon, and E. Hasman, "The Formation of Laser Beams with Pure Azimuthal or Radial Polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

D. Pohl, "Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01," Appl. Phys. Lett. 20, 266-267 (1972).
[CrossRef]

K. Wang, D. Mittleman, N. van der Valk, and P. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

N. van der Valk and P. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

H.-T. Chen, R. Kersting, and G. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro,W. Nakagawa, L. Aeschimann, U. Staufer, and H. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett. 85, 5340-5342 (2004).
[CrossRef]

Chem. Phys. Lett.

A. Markelz, A. Roitberg, and E. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

J. Appl. Phys.

J. Fontana and R. Pantell, "A high-energy, laser accelerator for electrons using the inverse Cherenkov effect," J. Appl. Phys. 54, 4285-4288 (1983).
[CrossRef]

N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A metal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910 (2005).
[CrossRef]

J. Microsc.

A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microsc. 210, 220-224 (2002).
[CrossRef]

J. Opt. A: Pure and Applied Optics

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, "Terahertz microscopy with submicrometre resolution," J. Opt. A: Pure and Applied Optics 7, S184-S189 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D: Appl. Phys.

A. Nesterov, V. Niziev, and V. Yakunin, "Generation of High-Power Radially Polarized Beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

V. Niziev and A. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1561 (1999).
[CrossRef]

Nature

K. Wang and D. Mittelman, "Metal wires for terahertz waveguiding," Nature 432, 373-379 (2004).
[CrossRef]

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Opt. Commun.

R. Lecaque, S. Grésillon, N. Barbey, R. Perreti, J.-C. Rivoal, and A.-C. Boccara, "THz near-field optical imaging by a local source," Opt. Commun. 262, 125-128 (2006).
[CrossRef]

E. Churin, J. Hosfeld, and T. Tschudi, "Polarization Configurations with Singular Point Formed by Computer Generated Holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

T. Grosjean and D. Courjon, "Smallest focal spots," Opt. Commun. 272, 314-319 (2007).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing Light to a Tighter Spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

L. Helseth, "Roles of Polarization, Phase and Amplitude in Solid Immersion Lens Systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

F. Baida, D. Labeke, and Y. Pagani, "Body-of-Revolution FDTD Simulations of Improved Tip Performance for Scanning Near-Field Optical Microscopes," Opt. Commun. 255, 241-252 (2003).
[CrossRef]

T. Grosjean, D. Courjon, and M. Spajer, "An All-Fiber Device for Generating Radially and Other Polarized Light Beams," Opt. Commun. 203, 1-5 (2002).
[CrossRef]

G. Volpe and D. Petrov, "Generation of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams," Opt. Commun. 237, 89-95 (2004).
[CrossRef]

T. Grosjean, A. Sabac, and D. Courjon, "A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations," Opt. Commun. 252, 12-21 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

G. Chang, C. Divin, C.-H. Liu, S. Williamson, A. Galvanauskas, and T. Norris, "Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification," Opt. Lett. 32, 433-435 (2007).
[CrossRef] [PubMed]

M. Roth, E. Wyss, H. Glur, and H. Weber, "Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens," Opt. Lett. 30, 1665-1667 (2005).
[CrossRef] [PubMed]

I. Moshe, S. Jackel, and A. Meir, "Production of of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects," Opt. Lett. 28, 807-809 (2003).
[CrossRef] [PubMed]

M. Stalder and M. Schadt, "Linearly Polarized Light with Axial Symmetry Generated by Liquid-Crystal Polarization Converters," Opt. Lett. 21, 1948-1950 (1996).
[CrossRef] [PubMed]

M. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, "Method for the generation of arbitrary complex vector wave front," Opt. Lett. 27, 1929-1931 (2002).
[CrossRef]

K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal," Opt. Lett. 31, 2151-2153 (2006).
[CrossRef] [PubMed]

J.-L. Li, K.-I. Ueda, M. Musha, A. Shirakawa, and L.-X. Zhong, "Generation of radially polarized mode in Yb fiber laser by using dual conical prism," Opt. Lett. 31, 2969-2971 (2006).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
[CrossRef] [PubMed]

A. Azad, Y. Zhao, W. Zhang, and M. He, "Effect of dielectric properties of metals on terahertz transmission through subwavelength hole arrays," Opt. Lett. 31, 2637-2639 (2006).
[CrossRef] [PubMed]

Phys. Rev. B

F. Baida, A. Belkhir, D. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205,419 (2006).
[CrossRef]

Phys. Rev. Lett.

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267,401 (2004).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233,901 (2003).
[CrossRef]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Proc. IEEE

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Other

F. C. De Lucia, Sensing with Terahertz radiation, chap. Spectroscopy in the Terahertz spectral region, pp. 39-115 (Springer Series of Optical Science, Springer, Berlin, 2003).

D. Marcuse, Light Transmission Optics, chap. 8, pp. 293-294 (New York: Van Nostrand Reinhold, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Classification of the first modes carried by a hollow circular waveguide of perfect metal (λ is the wavelength).

Fig. 2.
Fig. 2.

Intensity distribution and electric field orientation (pointed out by arrows) of the TE11, TM01 and TE21 modes sustained by a 7 λ wide metallic circular waveguide.

Fig. 3.
Fig. 3.

(a) Coupling efficiency C between a linearly polarized Gaussian beam and the various modes sustained by a cylindrical hollow waveguide of perfect metal, as a function of the waveguide diameter. (b) Configuration 1, half the incoming Gaussian beam cross-section has been phase retarded by π (see inset). (c) Configuration 2, half the fundamental mode cross section initially excited has been phase retarded by π (as shown in the inset).

Fig. 4.
Fig. 4.

Channeling efficiency of the TM01 mode as a function of the taper angle θ. The diameters of the large and small waveguides are 7 λ and 0.9 λ, respectively.

Fig. 5.
Fig. 5.

Efficiency of the TM01 mode selection as a function of the diameter of the first (large) waveguide; dashed line: configuration 1; solid line: configuration 2, configurations are detailed in §2.4.

Fig. 6.
Fig. 6.

Schema of the first radial polarizer prototype. It is composed of a DPE and a focusing waveguide system.

Fig. 7.
Fig. 7.

Effect of the DPE onto the incident free space Gaussian beam. The waveguide modes excited with and without DPE are also indicated.

Fig. 8.
Fig. 8.

FDTD simulation of the focusing waveguide system. The real case is simulated in the middle column whereas the right and left columns show the projection of the field distribution in a basis of eigenmodes. We see that the degenerated space mode (b) that is produced with the DPE is the result of the combination of (a) a radially polarized mode and (c) a four-spot mode with hybrid polarization. (d,e,f) show the fifth root of the electric intensities in a longitudinal cross-section of the device for the three input modes. (g,h,i) exhibit the electric intensities in a lateral plane located at 15 mm from the output side of the device.

Fig. 9.
Fig. 9.

Scheme of the experimental setup.

Fig. 10.
Fig. 10.

(a) Measured intensity before the DPE (dots) compared with a theoretical gaussian beam (solid line). (b) Images of the transmitted intensity obtained without DPE when the polarizing probe axis is parallel (upper part) and perpendicular (lower part) to the incident polarization direction. Intensities are normalized to the same maximum value for both images.

Fig. 11.
Fig. 11.

Acquisition results of the field distribution transmitted by the prototype over a scan of 7×7 mm2. (a) and (b) are images acquired for two orthogonal axis of the polarizing detection probe (axis indicated by arrows). (c) Numerical combination of (a) and (b). (d) Horizontal cross-section of (a) (solid curve) and vertical one of (b) (dashed curve).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C m = P m P i ,
P i = 1 2 r d r d θ ( E i × H i * ) · e z ,
P m = 1 2 r d r d θ ( a m E m × b m * H m * ) · e z .
a m = r d r d θ ( E i × H m * ) · e z r d r d θ ( E m × H m * ) · e z ,
b m = r d r d θ ( E m * × H i ) · e z r d r d θ ( E m * × H m ) · e z .
E i ( x , y , 0 , t ) = 1 4 π 2 exp ( i ω t ) e i ( u , v ) G ( u , v ) exp [ i ( ux + vy ) ] d u d v ,
H i ( x , y , 0 , t ) = 1 4 π 2 exp ( i ω t ) h i ( u , v ) G ( u , v ) exp [ i ( ux + vy ) ] d u d v .

Metrics