Abstract

We report the characterization of a birefringent all-solid hybrid microstructured fiber, in which the core-modes are guided by both the photonic bandgap (PBG) effect and total internal reflection (TIR). Due to the twofold symmetry, modal birefringence of 1.5×10-4 and group birefringence of 2.1×10-4 were measured at 1.31 μm, which is in the middle of the second bandgap. The band structure was calculated to be different from conventional 2-D PBG fibers due to the 1-D arrangement of high-index regions. The bend loss has a strong directional dependence due to the coexistence of the two guiding mechanisms. The fiber has two important properties pertinent to PBG fibers; spectral filtering, and chromatic dispersion specific to PBG fibers. The number of high-index regions, which trap pump power (by index guiding) when the fiber is used in cladding-pumped fiber lasers, is greatly reduced so that this fiber should enable efficient cladding pumping. This structure is suitable for linearly-polarized, cladding-pumped fiber lasers utilizing the properties of PBG fibers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Single-mode propagation into depressed-core-index photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000).
    [CrossRef]
  2. J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A 6, 667-670 (2004).
    [CrossRef]
  3. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
    [CrossRef] [PubMed]
  4. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-1-309.
    [CrossRef] [PubMed]
  5. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1199 (1978).
    [CrossRef]
  6. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  7. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995).
    [CrossRef]
  8. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A 6, 798-804 (2004).
    [CrossRef]
  9. T. P. White, R. C. McPhedran, C. Martjin de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  10. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  11. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
    [CrossRef] [PubMed]
  12. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
    [CrossRef]
  13. A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-20-9238.
    [CrossRef] [PubMed]
  14. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8452.
    [CrossRef] [PubMed]
  15. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov,M. E. Likhachev,M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, "Low-loss singlemode large mode area all-silica photonic bandgap fiber," Opt. Express 14, 562-569 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-562.
    [CrossRef] [PubMed]
  16. Y. Barannikov, A. Oussov, F. Shcherbina, R. Yagodkin, V. Gapontsev, and N. Platonov, "250W, single-mode, CW, linearly-polarized fibre source in Yb wavelength range," in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CMS3 (2004).
  17. J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, "Polarization maintaining hybrid TIR / bandgap all-solid photonic crystal fiber," in Proceedings of Conference on Lasers and Electro-Optics, and Conference on Quantum Electronics and Laser Science (Optical Society of America, 2008), paper CThV1 (2008).
    [PubMed]
  18. R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, "Cladding-Pumped Yb-Doped Solid Photonic Bandgap Fiber for ASE Suppression in ShorterWavelength Region," in Proceedings of Conference on Optical Fiber communication/National Fiber Optic Engineers Conference (Optical Society of America, 2008), paper OTuJ5 (2008).
    [CrossRef] [PubMed]
  19. A. Cerqueira. S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-926.
    [CrossRef] [PubMed]
  20. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-8-3-173.
    [CrossRef] [PubMed]
  21. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 13, 2503-2511 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-7-2503.
    [CrossRef] [PubMed]
  22. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5688.
    [CrossRef] [PubMed]
  23. L. Xiao, W. Jin, and M. S. Demokan, "Photonic crystal fibers confining light by both indexguiding and bandgap-guiding: hybrid PCFs," Opt. Express 15, 15637-15647 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-15637.
    [CrossRef]
  24. T. Hosaka, K. Okamoto, Y. Sasaki, and T. Edahiro, "Single mode fibres with asymmetrical refractive index pits on both sides of core," Electron. Lett. 17, 191-193 (1981).
    [CrossRef]
  25. N. A. Issa and L. Poladian, "Vector wave expansion method for leaky modes of microstructured optical fibers," J. Lightwave Technol. 21, 1005-1012 (2003). (Note that, in our paper, due to superior performance in most applications, a finite difference scheme is used in the radial direction instead of the basis function expansion described in the reference.)
    [CrossRef]
  26. X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K.W. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-16-3888.
    [CrossRef] [PubMed]
  27. W. J. Bock and W. Urbanczyk, "Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type inteferometry," Appl. Opt. 32, 5841-5848 (1993).
    [CrossRef] [PubMed]
  28. M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
    [CrossRef] [PubMed]
  29. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1983).
    [CrossRef]
  30. H.-T. Shang, "Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres," Electron. Lett. 17, 603-605 (1981).
    [CrossRef]

2008

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

2007

2006

2005

2004

2003

2002

2001

2000

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Single-mode propagation into depressed-core-index photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000).
[CrossRef]

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

1995

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995).
[CrossRef]

1993

1983

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1983).
[CrossRef]

1981

H.-T. Shang, "Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres," Electron. Lett. 17, 603-605 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, Y. Sasaki, and T. Edahiro, "Single mode fibres with asymmetrical refractive index pits on both sides of core," Electron. Lett. 17, 191-193 (1981).
[CrossRef]

1978

Abeeluck, A. K.

Alam, M. S.

Argyros, A.

Atkin, D. M.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995).
[CrossRef]

Bigot, L.

Bird, D. M.

Birks, T. A.

Bjarklev, A.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A 6, 667-670 (2004).
[CrossRef]

Blondy, J.-M.

Bock, W. J.

Bouwmans, G.

Brechet, F.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Single-mode propagation into depressed-core-index photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000).
[CrossRef]

Broeng, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A 6, 667-670 (2004).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Bubnov, M. M.

Carberry, J. P.

Cerqueira, A.

Chen, X.

Cordeiro, C. M.

Cordeiro, C. M. B.

Crowley, A. M.

Demokan, M. S.

Dianov, E. M.

Douay, M.

Edahiro, T.

T. Hosaka, K. Okamoto, Y. Sasaki, and T. Edahiro, "Single mode fibres with asymmetrical refractive index pits on both sides of core," Electron. Lett. 17, 191-193 (1981).
[CrossRef]

Eggleton, B. J.

Février, S.

Gallagher, M. T.

George, A. K.

Guryanov, A. N.

Headley, C.

Hedley, T. D.

Hosaka, T.

T. Hosaka, K. Okamoto, Y. Sasaki, and T. Edahiro, "Single mode fibres with asymmetrical refractive index pits on both sides of core," Electron. Lett. 17, 191-193 (1981).
[CrossRef]

Isomäki, A.

Issa, N. A.

Jamier, R.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Jin, W.

Joannopoulos, J.

Johnson, S.

Khopin, V. F.

Knight, J. C.

Koch, K.W.

Koshiba, M.

Lægsgaard, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A 6, 667-670 (2004).
[CrossRef]

J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A 6, 798-804 (2004).
[CrossRef]

Leon-Saval, S. G.

Li, M.-J.

Likhachev, M. E.

Litchinitser, N. M.

Lopez, F.

Luan, F.

Marcou, J.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Single-mode propagation into depressed-core-index photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000).
[CrossRef]

Marom, E.

Martjin de Sterke, C.

McPhedran, R. C.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1983).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1983).
[CrossRef]

T. Hosaka, K. Okamoto, Y. Sasaki, and T. Edahiro, "Single mode fibres with asymmetrical refractive index pits on both sides of core," Electron. Lett. 17, 191-193 (1981).
[CrossRef]

Okhotnikov, O. G.

Pagnoux, D.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Single-mode propagation into depressed-core-index photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000).
[CrossRef]

Pearce, G. J.

Poladian, L.

Provino, L.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Quiquempois, Y.

Riishede, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A 6, 667-670 (2004).
[CrossRef]

Roberts, P. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995).
[CrossRef]

Roy, P.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Single-mode propagation into depressed-core-index photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000).
[CrossRef]

Russell, P. S. J.

Russell, P. St. J.

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-1-309.
[CrossRef] [PubMed]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995).
[CrossRef]

Saitoh, K.

Salganskii, M. Y.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1983).
[CrossRef]

T. Hosaka, K. Okamoto, Y. Sasaki, and T. Edahiro, "Single mode fibres with asymmetrical refractive index pits on both sides of core," Electron. Lett. 17, 191-193 (1981).
[CrossRef]

Semjonov, S. L.

Shang, H.-T.

H.-T. Shang, "Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres," Electron. Lett. 17, 603-605 (1981).
[CrossRef]

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995).
[CrossRef]

Urbanczyk, W.

Venkataraman, N.

Wang, A.

White, T. P.

Wood, W. A.

Xiao, L.

Yariv, A.

Yeh, P.

Zenteno, L. A.

Appl. Opt.

Appl. Phys. Lett.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Electron. Lett.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Single-mode propagation into depressed-core-index photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000).
[CrossRef]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995).
[CrossRef]

T. Hosaka, K. Okamoto, Y. Sasaki, and T. Edahiro, "Single mode fibres with asymmetrical refractive index pits on both sides of core," Electron. Lett. 17, 191-193 (1981).
[CrossRef]

H.-T. Shang, "Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres," Electron. Lett. 17, 603-605 (1981).
[CrossRef]

J. Lightwave Technol.

J. Opt. A

J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A 6, 798-804 (2004).
[CrossRef]

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A 6, 667-670 (2004).
[CrossRef]

J. Opt. Soc. Am.

Opt. Express

S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-8-3-173.
[CrossRef] [PubMed]

X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K.W. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-16-3888.
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8452.
[CrossRef] [PubMed]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov,M. E. Likhachev,M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, "Low-loss singlemode large mode area all-silica photonic bandgap fiber," Opt. Express 14, 562-569 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-562.
[CrossRef] [PubMed]

A. Cerqueira. S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-926.
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-1-309.
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 13, 2503-2511 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-7-2503.
[CrossRef] [PubMed]

T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5688.
[CrossRef] [PubMed]

A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-20-9238.
[CrossRef] [PubMed]

L. Xiao, W. Jin, and M. S. Demokan, "Photonic crystal fibers confining light by both indexguiding and bandgap-guiding: hybrid PCFs," Opt. Express 15, 15637-15647 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-15637.
[CrossRef]

Opt. Lett.

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Other

Y. Barannikov, A. Oussov, F. Shcherbina, R. Yagodkin, V. Gapontsev, and N. Platonov, "250W, single-mode, CW, linearly-polarized fibre source in Yb wavelength range," in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CMS3 (2004).

J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, "Polarization maintaining hybrid TIR / bandgap all-solid photonic crystal fiber," in Proceedings of Conference on Lasers and Electro-Optics, and Conference on Quantum Electronics and Laser Science (Optical Society of America, 2008), paper CThV1 (2008).
[PubMed]

R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, "Cladding-Pumped Yb-Doped Solid Photonic Bandgap Fiber for ASE Suppression in ShorterWavelength Region," in Proceedings of Conference on Optical Fiber communication/National Fiber Optic Engineers Conference (Optical Society of America, 2008), paper OTuJ5 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic cross section and refractive index profile of all-solid hybrid microstructured fiber.

Fig. 2.
Fig. 2.

Cross section of the hybrid microstructured fiber.

Fig. 3.
Fig. 3.

Transmission spectra of the hybrid microstructured fiber.

Fig. 4.
Fig. 4.

Calculated band structure and fundamental core-mode of the hybrid and 2-D structure. The core-mode is shown only in the second bandgap for simplicity. 7×7 supercell is used for the calculation.

Fig. 5.
Fig. 5.

Typical intensity profiles of the LP02-based supermodes between the second and additional bandgaps of the hybrid structure.

Fig. 6.
Fig. 6.

Typical intensity profiles of the LP21-based supermodes between the third and additional bandgaps of the hybrid structure.

Fig. 7.
Fig. 7.

Loss spectrum of the hybrid microstructured fiber.

Fig. 8.
Fig. 8.

Setup for angle dependency measurement of bend loss.

Fig. 9.
Fig. 9.

Measurements of angle dependency of bend loss.

Fig. 10.
Fig. 10.

Measured DOLP as a function of removed fiber length.

Fig. 11.
Fig. 11.

Measurements of the group birefringence.

Fig. 12.
Fig. 12.

Chromatic dispersion of the fiber.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

B m ( λ ) = B ms ( λ ) + B mf ( λ ) .
DOLP = I max I min I max + I min
B g ( λ ) = λ 2 L Δ λ
B g ( λ ) = B m ( λ ) λ d B m d λ .
B g ( λ ) = B gs ( λ ) + B gf ( λ )
B gs ( λ ) = B ms ( λ ) λ d B ms d λ
B gf ( λ ) = B mf ( λ ) λ d B mf d λ .

Metrics