Abstract

We characterize terahertz metamaterials by applying apertureless near-field microscopy with a bandwidth that covers the entire spectral response of the structures. The observations agree with the interpretation of the fundamental mode of the metamaterial. But the high frequency resonance shows properties that deviate from the common interpretation. We show that the high frequency response is governed by surface plasmon excitations, which have a comparable oscillator strength as the fundamental mode.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-43 (2004).
  2. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
    [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  4. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377-445 (1908).
    [CrossRef]
  5. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  6. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer tracts in modern physics, 1998).
  7. E. Shamonina and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: components for a one-dimensional waveguide," J. Phys. D 37, 362-367 (2004).
    [CrossRef]
  8. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
    [CrossRef]
  9. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
    [CrossRef]
  10. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. E. R. Vogelsang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials," Opt. Lett. 33, 848-850 (2008).
    [CrossRef] [PubMed]
  11. H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3012 (2003).
    [CrossRef]
  12. F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
    [CrossRef] [PubMed]
  13. H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267401 (2004).
    [CrossRef]
  14. M. Abashin, U. Levy, K. Ikeda, and Y. Fainman, "Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators," Opt. Lett. 32, 2602-2604 (2007).
    [CrossRef] [PubMed]
  15. G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
    [CrossRef]
  16. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  17. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).
    [CrossRef] [PubMed]
  18. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
    [CrossRef]

2008 (4)

G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. E. R. Vogelsang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials," Opt. Lett. 33, 848-850 (2008).
[CrossRef] [PubMed]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Abashin, U. Levy, K. Ikeda, and Y. Fainman, "Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators," Opt. Lett. 32, 2602-2604 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
[CrossRef] [PubMed]

2006 (3)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

2004 (3)

E. Shamonina and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: components for a one-dimensional waveguide," J. Phys. D 37, 362-367 (2004).
[CrossRef]

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267401 (2004).
[CrossRef]

J. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-43 (2004).

2003 (1)

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3012 (2003).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1908 (1)

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Abashin, M.

Acuna, G.

G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
[CrossRef]

F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
[CrossRef] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Azad, A. K.

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

Buersgens, F.

G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
[CrossRef]

F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
[CrossRef] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
[CrossRef]

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267401 (2004).
[CrossRef]

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3012 (2003).
[CrossRef]

Cho, G. C.

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267401 (2004).
[CrossRef]

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3012 (2003).
[CrossRef]

Dorfmüller, J.

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Fainman, Y.

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Giessen, H.

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
[CrossRef]

Guggenmos, A.

G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
[CrossRef]

Handloser, M.

G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
[CrossRef]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Ikeda, K.

Kern, K.

Kersting, R.

G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
[CrossRef]

F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
[CrossRef] [PubMed]

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267401 (2004).
[CrossRef]

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3012 (2003).
[CrossRef]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Kraatz, S.

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267401 (2004).
[CrossRef]

Lang, C. H.

G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
[CrossRef]

F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
[CrossRef] [PubMed]

Lederer, F.

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Levy, U.

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Liu, H.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Manus, S.

F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
[CrossRef] [PubMed]

Mie, G.

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377-445 (1908).
[CrossRef]

O’Hara, J. F.

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).
[CrossRef] [PubMed]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Pendry, J.

J. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-43 (2004).

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Pertsch, T.

Potrebic, S. I.

F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Rockstuhl, C.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Shamonina, E.

E. Shamonina and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: components for a one-dimensional waveguide," J. Phys. D 37, 362-367 (2004).
[CrossRef]

Singh, R.

Smirnova, E.

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).
[CrossRef] [PubMed]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

Smith, D. R.

J. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-43 (2004).

Solymar, L.

E. Shamonina and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: components for a one-dimensional waveguide," J. Phys. D 37, 362-367 (2004).
[CrossRef]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Stewart, W.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Taylor, A. J.

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).
[CrossRef] [PubMed]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
[CrossRef]

Vogelsang, C. E. R.

Wegener, M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zentgraf, T.

Zhang, W.

Zhang, X.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Zhu, S. N.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
[CrossRef]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Appl. Phys. Lett. (2)

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3012 (2003).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

Electron. Lett. (1)

G. Acuna, F. Buersgens, C. H. Lang, M. Handloser, A. Guggenmos, and R. Kersting, "Interdigitated terahertz emitters," Electron. Lett. 44, 229-231 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Phys. D (1)

E. Shamonina and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: components for a one-dimensional waveguide," J. Phys. D 37, 362-367 (2004).
[CrossRef]

Nat. Photonics (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Nature (London) (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (4)

H.-T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy," Phys. Rev. Lett. 93, 267401 (2004).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Phys. Today (1)

J. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-43 (2004).

Rev. Sci. Instrum. (1)

F. Buersgens, G. Acuna, C. H. Lang, S. I. Potrebic, S. Manus, and R. Kersting, "Shear force control for a THz near field microscope," Rev. Sci. Instrum. 78, 113701 (2007).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer tracts in modern physics, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Top view onto the metamaterial, which consists of a metallic structure fabricated on n-doped GaAs, with a=50 µm and b=c=36 µm. (b) Cross section through the device. Application of a bias between ohmic contact and Schottky contact enlarges the depletion zone, which prevents short-circuiting of the capacitor. (c) Far-field transmission spectra for two different biases. The inset illustrates the polarization of the incident light and two possible modes within one element.

Fig. 2.
Fig. 2.

(a) Schematic of the apertureless THz microscope. The tungsten probe concentrates the incident radiation to the area underneath the tip. (b) Terahertz near-field image of one unit cell. The lateral resolution is about 1 µm. (c) Differential image obtained by switching the structure on and off. The dotted lines illustrate the position of the element.

Fig. 3.
Fig. 3.

Spectrally resolved coupling of the near-field to the metamaterial. The spectra were obtained at two different positions of the metamaterial.

Fig. 4.
Fig. 4.

Dispersion relation for surface plasmon excitations propagating on a metal/air interface and on a metal/GaAs interface. Coupling between light and surface plasmons is possible at 1.6 THz, when an inverse lattice vector G = 2 π a is gained from the grating.

Fig. 5.
Fig. 5.

(a) Simulated and (b) measured far-field transmission spectra for two different periodicities, 50 µm and 60 µm. The samples were fabricated on intrinsic Si.

Metrics