Abstract

An efficient mode for scanning confocal dark-field microscopy through a thin gold film is established that takes advantage of the intermediate excitation of surface plasmons both in the excitation and in the emission process. This concept is verified by experimental investigation of the effective point-spread function, the intensity distribution of the scattered radiation and by comparison with a classical dark-field geometry. The wavelength-dependence of both the signal strength and the point-spread function are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, "Radiative Decay Engineering: Biophysical and Biomedical Applications," Anal. Biochem. 298, 1-24 (2001).
    [CrossRef] [PubMed]
  2. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman-scattering," J. Phys. Condens. Matter 4, 1143-1212 (1992).
    [CrossRef]
  3. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
    [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86(2005).
    [CrossRef]
  5. K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
    [CrossRef]
  6. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
    [CrossRef]
  7. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  8. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
    [CrossRef] [PubMed]
  9. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
    [CrossRef]
  10. P. K. Aravind and H. Metiu, "The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy," Surf. Sci. 124, 506-528 (1983).
    [CrossRef]
  11. H. Xu and M. Käll, "Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
    [CrossRef] [PubMed]
  12. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  13. T. Okamoto and I. Yamaguchi, "Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique," J. Phys. Chem. B 107, 10321-10324 (2003).
    [CrossRef]
  14. Y. M. Gerbshtein, I. A. Merkulov, and D. N. Mirlin, "Transfer of Luminescence-center energy to surface plasmons," JETP Lett. 22, 35-36 (1975).
  15. H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993).
    [CrossRef]
  16. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005).
    [CrossRef] [PubMed]
  17. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
    [CrossRef] [PubMed]
  18. G. Frens, "Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions," Nature Phys. Sci. 241, 20-22 (1973).
  19. E. Kretschmann and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift Für Naturforschung Part A 23, 2135-2136 (1968).
  20. B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000).
    [CrossRef] [PubMed]
  21. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, "Surface plasmon interference excited by tightly focused laser beams," Opt. Lett. 32, 2535-2537 (2007).
    [CrossRef] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6 ed., (Cambridge University Press, 1997).
    [PubMed]
  23. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons Inc, Hoboten, 1988).
  24. R. E. Collin, Field Theory of Guided Waves (IEEE Press, New York, 1991).

2007 (2)

2005 (3)

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86(2005).
[CrossRef]

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
[CrossRef]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005).
[CrossRef] [PubMed]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

T. Okamoto and I. Yamaguchi, "Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique," J. Phys. Chem. B 107, 10321-10324 (2003).
[CrossRef]

2002 (3)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

H. Xu and M. Käll, "Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

2001 (1)

J. R. Lakowicz, "Radiative Decay Engineering: Biophysical and Biomedical Applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

2000 (3)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[CrossRef] [PubMed]

1993 (1)

H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993).
[CrossRef]

1992 (1)

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman-scattering," J. Phys. Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

1983 (1)

P. K. Aravind and H. Metiu, "The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy," Surf. Sci. 124, 506-528 (1983).
[CrossRef]

1975 (1)

Y. M. Gerbshtein, I. A. Merkulov, and D. N. Mirlin, "Transfer of Luminescence-center energy to surface plasmons," JETP Lett. 22, 35-36 (1975).

1973 (1)

G. Frens, "Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions," Nature Phys. Sci. 241, 20-22 (1973).

1968 (1)

E. Kretschmann and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift Für Naturforschung Part A 23, 2135-2136 (1968).

Akemann, W.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman-scattering," J. Phys. Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

Aravind, P. K.

P. K. Aravind and H. Metiu, "The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy," Surf. Sci. 124, 506-528 (1983).
[CrossRef]

Aussenegg, F.

H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993).
[CrossRef]

Aussenegg, F. R.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[CrossRef] [PubMed]

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005).
[CrossRef] [PubMed]

Bouhelier, A.

Brunner, H.

H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993).
[CrossRef]

Bruyant, A.

Carminati, R.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
[CrossRef]

Chan, V. Z. H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Colas des Francs, G.

Dereux, A.

Ditlbacher, H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86(2005).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Frens, G.

G. Frens, "Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions," Nature Phys. Sci. 241, 20-22 (1973).

Geier, S.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Gerbshtein, Y. M.

Y. M. Gerbshtein, I. A. Merkulov, and D. N. Mirlin, "Transfer of Luminescence-center energy to surface plasmons," JETP Lett. 22, 35-36 (1975).

Grabhorn, H.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman-scattering," J. Phys. Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

Greffet, J. J.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[CrossRef] [PubMed]

Hecker, N. E.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Huang, C.

Ignatovich, F.

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[CrossRef] [PubMed]

Joulain, K.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
[CrossRef]

Käll, M.

H. Xu and M. Käll, "Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

Knobloch, H.

H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993).
[CrossRef]

Knoll, W.

H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993).
[CrossRef]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift Für Naturforschung Part A 23, 2135-2136 (1968).

Lakowicz, J. R.

J. R. Lakowicz, "Radiative Decay Engineering: Biophysical and Biomedical Applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

Lamprecht, B.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Leitner, A.

H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993).
[CrossRef]

Marquier, F.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
[CrossRef]

Merkulov, I. A.

Y. M. Gerbshtein, I. A. Merkulov, and D. N. Mirlin, "Transfer of Luminescence-center energy to surface plasmons," JETP Lett. 22, 35-36 (1975).

Metiu, H.

P. K. Aravind and H. Metiu, "The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy," Surf. Sci. 124, 506-528 (1983).
[CrossRef]

Mirlin, D. N.

Y. M. Gerbshtein, I. A. Merkulov, and D. N. Mirlin, "Transfer of Luminescence-center energy to surface plasmons," JETP Lett. 22, 35-36 (1975).

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

Moller, M.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Mrozek, I.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman-scattering," J. Phys. Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

Mulet, J. P.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
[CrossRef]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Novotny, L.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, "Surface plasmon interference excited by tightly focused laser beams," Opt. Lett. 32, 2535-2537 (2007).
[CrossRef] [PubMed]

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto and I. Yamaguchi, "Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique," J. Phys. Chem. B 107, 10321-10324 (2003).
[CrossRef]

Otto, A.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman-scattering," J. Phys. Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift Für Naturforschung Part A 23, 2135-2136 (1968).

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86(2005).
[CrossRef]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Spatz, J. P.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005).
[CrossRef] [PubMed]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005).
[CrossRef] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
[CrossRef]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005).
[CrossRef] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Weeber, J. C.

Wiederrecht, G. P.

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
[CrossRef]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Xu, H.

H. Xu and M. Käll, "Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, "Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique," J. Phys. Chem. B 107, 10321-10324 (2003).
[CrossRef]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86(2005).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, "Radiative Decay Engineering: Biophysical and Biomedical Applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86(2005).
[CrossRef]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

J. Chem. Phys. (2)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993).
[CrossRef]

J. Phys. Chem. B (1)

T. Okamoto and I. Yamaguchi, "Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique," J. Phys. Chem. B 107, 10321-10324 (2003).
[CrossRef]

J. Phys. Condens. Matter (1)

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman-scattering," J. Phys. Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

JETP Lett. (1)

Y. M. Gerbshtein, I. A. Merkulov, and D. N. Mirlin, "Transfer of Luminescence-center energy to surface plasmons," JETP Lett. 22, 35-36 (1975).

Nature Phys. Sci. (1)

G. Frens, "Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions," Nature Phys. Sci. 241, 20-22 (1973).

Opt. Lett. (1)

Phys. Rev. Lett. (5)

B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[CrossRef] [PubMed]

H. Xu and M. Käll, "Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Surf. Sci. (1)

P. K. Aravind and H. Metiu, "The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy," Surf. Sci. 124, 506-528 (1983).
[CrossRef]

Surf. Sci. Rep. (1)

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
[CrossRef]

Zeitschrift Für Naturforschung Part A (1)

E. Kretschmann and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift Für Naturforschung Part A 23, 2135-2136 (1968).

Other (3)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6 ed., (Cambridge University Press, 1997).
[PubMed]

P. Yeh, Optical Waves in Layered Media (John Wiley & Sons Inc, Hoboten, 1988).

R. E. Collin, Field Theory of Guided Waves (IEEE Press, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematic representation of a dark field microscope. (b) Reflectivity and field enhancement for plane wave illumination with a wavelength of 633 nm in p polarization (Dielectric constants are εglass=2.25901, εgold=-11.8321+i·1.36442, εair=1, the thickness of the gold film is dAu=50 nm. (c) Same as (b) for s polarization. (d) Magnified view on (b).

Fig. 2.
Fig. 2.

(a) |Tzx(rB1)|2, b) |Tzy(rB1)|2 (c) Intensity in B2 (Term in curly brackets in equation (1)). (d) Same as (c) if a linear block is introduced. The scaling does not represent the full range of values which goes up to 55.

Fig. 3.
Fig. 3.

(a–b) Measured scattering signals from a polystyrene sphere (d=300 nm) for incident light of λ=633 nm polarized parallel (‖) and perpendicular (⊥) to the block edge. (c–d) Calculated signal assuming a pointlike dipole in z-direction.

Fig. 4.
Fig. 4.

Light intensity distribution in AB2, recorded with a CCD camera. (a) Specular reflection from a mirror, no blocks. (b) Scattered light from a polystyrene sphere in dark field mode. (c) Light scattered by a ‘clean’ part of the gold film.

Fig. 5.
Fig. 5.

Dark-field micrographs of 60 nm Au colloids on Au at 633 nm for different block shapes as shown in the insets. (a) Circular symmetric blocking. (b) Double-linear blocking. (c) Double-linear blocking with additional central block preventing light al low θ to pass B1.

Fig. 6.
Fig. 6.

Calculated patterns for a pointlike dipole in z-direction, field enhancement factors and reflectivities for four selected wavelengths and two polarization directions. The white cross indicates the Gaussian focal point.

Fig. 7.
Fig. 7.

(a) Maximum scattering intensity as a function of wavelength for a dipole in z-direction. (b) Displacement of the object position from the Gaussian focal point for maximum intensity and ⊥ polarization.

Fig. 8.
Fig. 8.

(a–b) Spectra from a gold particle of 115 nm diameter on top of a 50 nm gold film and a cysteamin spacer layer (1 nm) in white light illumination, taken for different positions as absolute (a) and normalised values (b). In (c) positions where spectra are taken are indicated on top of a lateral intensity distribution obtained in scanning mode with white light illumination.

Fig.A1.
Fig.A1.

1. Geometry under consideration, (a) 2D-sketch, (b) 3D-sketch illustrating the definition ψ. (c) Energy conservation of connected areas on the focal plane

Fig.A2.
Fig.A2.

2. Illustration of reciprocity

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P = cn ε 0 [ α 0 λ 2 k 2 d 4 π λ 0 2 ] 2 A B 2 [ E z FP ( r FP ) ] 2 × Δ A B 2 Δ A B 2 A B 2 { [ T zx ( r B 2 ) ] 2 + [ T zy ( r B 2 ) ] 2 }
T zx = [ R 1 AR ] zx · 1 cos ( θ ) T zy = [ R 1 AR ] zy · 1 cos ( θ )
E FP , z = ik A B 1 2 π d Δ A B 1 Δ A B 1 A B 1 e ikr T zx ( r B 1 ) E B 1 , x
E FP = ik 2 π d Δ A B 1 e ikr R 1 AR E B 1 = ik A B 1 2 π d Δ A B 1 A B 1 e ikr R 1 AR E B 1 · 1 cos ( θ )
α zz = k 0 2 k 2 α 0 = λ 2 λ 0 2 α 0
d V E F P J B 2 = d V E B 2 J F P
E p B 2 ( r F P ) p F P = E p F P ( r B 2 ) p B 2
E ˜ B 2 x = p k 2 1 4 π ε 0 1 d cos ( θ )
E ˜ F P = R 1 A R e ^ x E ˜ B 2 x = [ R 1 A R ] ( r B 2 ) e ^ x E ˜ B 2 x = [ R 1 A R ] ( r B 2 ) e ^ x p k 2 1 4 π ε 0 1 d cos ( θ )
E B 2 x = ( p x p y p z ) · [ ( [ R 1 AR ] xx [ R 1 AR ] xy [ R 1 AR ] xz [ R 1 AR ] yx [ R 1 AR ] yy [ R 1 AR ] yz [ R 1 AR ] zx [ R 1 AR ] zy [ R 1 AR ] zz ) ( 1 0 0 ) ] k 2 4 π ε 0 1 d cos ( θ )
E B 2 y = ( p x p y p z ) · [ ( [ R 1 AR ] xx [ R 1 AR ] xy [ R 1 AR ] xz [ R 1 AR ] yx [ R 1 AR ] yy [ R 1 AR ] yz [ R 1 AR ] zx [ R 1 AR ] zy [ R 1 AR ] zz ) ( 1 0 0 ) ] k 2 4 π ε 0 1 d cos ( θ )
dP d A B 2 = c n E . D = cn ε 0 E 2 =
cn ε 0 [ α 0 λ 2 k 2 d 4 π λ 0 2 ] 2 [ E z FP ( r FP ) ] 2 { [ [ R 1 AR ] zx ( r B 2 ) ] 2 + [ [ R 1 AR ] zy ( r B 2 ) ] 2 } · 1 cos ( θ )
P = cn ε 0 [ α 0 λ 2 k 2 d 4 π λ 0 2 ] 2 A B 2 [ E z FP ( r FP ) ] 2 ×
Δ A B 2 A B 2 { [ 1 cos ( θ ) [ R 1 AR ] zx ( r B 2 ) ] 2 + [ 1 cos ( θ ) [ R 1 AR ] zy ( r B 2 ) ] 2 }

Metrics