Abstract

Avalanche concentration, a rapid, long-range accumulation of particles around a laser spot in a liquid sample, is demonstrated and characterized for various nanoparticles (NPs). The effect is driven by a convective flow in the sample, caused by efficient heating of NPs with high absorption efficiencies. Several types of concentration behavior were observed and characterized. Control of optical power and initial particle density was found to be effective in determining the assembly process. VO2 nanowires, carbon nanotube (CNT), and quantum dot (QD) electrode gap bridges were assembled with a variety of sizes and geometries to show the utility of the method for nano-assembly. Bridges were assembled from as many as thousands to as few as one NP and were found to form solid electrical contact between the electrodes, as verified by measuring the current - voltage (I-V) characteristic.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions

Wei Ji, Weizhe Chen, Sanhua Lim, Jianyi Lin, and Zhixin Guo
Opt. Express 14(20) 8958-8966 (2006)

Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection

Oleg A. Louchev, Saulius Juodkazis, Naoki Murazawa, Satoshi Wada, and Hiroaki Misawa
Opt. Express 16(8) 5673-5680 (2008)

Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics

Xiaoyu Miao, Benjamin K. Wilson, Suzie H. Pun, and Lih Y. Lin
Opt. Express 16(18) 13517-13525 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis,” Nano Lett. 3, 1019–1023 (2003).
    [Crossref]
  2. L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
    [Crossref]
  3. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
    [Crossref] [PubMed]
  4. J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
    [Crossref] [PubMed]
  5. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
    [Crossref] [PubMed]
  6. J. Liu and Y. Lu, “A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles” J. Am. Chem. Soc. 125, 6642 (2003).
    [Crossref] [PubMed]
  7. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
    [Crossref] [PubMed]
  8. S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-Linked Nanoparticle Aggregates,” J. Phys. Chem. B 110, 12673–12681 (2006).
    [Crossref] [PubMed]
  9. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
    [Crossref]
  10. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15, 12017–12029 (2007).
    [Crossref] [PubMed]
  11. S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection” Appl. Phys. Lett. 86, 131921 (2005).
    [Crossref]
  12. D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
    [Crossref]
  13. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  14. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32 (2007).
    [Crossref] [PubMed]
  15. M. Eagleson, Concise Encyclopedia Chemistry (Walter de Gruyter, 1994).
  16. W. A. Goddard, D. W. Brenner, and S. E. Lyshevski, Handbook of Nanoscience, Engineering, and Technology (CRC Press, 2002).
  17. H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
    [Crossref]

2008 (1)

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[Crossref] [PubMed]

2007 (3)

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15, 12017–12029 (2007).
[Crossref] [PubMed]

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32 (2007).
[Crossref] [PubMed]

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

2006 (4)

S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-Linked Nanoparticle Aggregates,” J. Phys. Chem. B 110, 12673–12681 (2006).
[Crossref] [PubMed]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref] [PubMed]

2005 (2)

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection” Appl. Phys. Lett. 86, 131921 (2005).
[Crossref]

2004 (1)

D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[Crossref]

2003 (3)

R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis,” Nano Lett. 3, 1019–1023 (2003).
[Crossref]

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

J. Liu and Y. Lu, “A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles” J. Am. Chem. Soc. 125, 6642 (2003).
[Crossref] [PubMed]

1986 (1)

Angelo, S. K. S.

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

Ashkin, A.

Badenes, G.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Bjorkholm, J. E.

Braun, D.

S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection” Appl. Phys. Lett. 86, 131921 (2005).
[Crossref]

Brenner, D. W.

W. A. Goddard, D. W. Brenner, and S. E. Lyshevski, Handbook of Nanoscience, Engineering, and Technology (CRC Press, 2002).

Bush, J.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Chebian, R. V.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Cheng, L.

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

Chirayos, V.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Chu, S.

Clifford, J.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

Conley, F.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Dholakia, K.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Dong, L.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Dubin, V. M.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Duhr, S.

S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection” Appl. Phys. Lett. 86, 131921 (2005).
[Crossref]

Dziedzic, J. M.

Eagleson, M.

M. Eagleson, Concise Encyclopedia Chemistry (Walter de Gruyter, 1994).

Fischer, A.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

Flatt, A. K.

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

Franzon, P. D.

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Georganopoulou, D.

S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-Linked Nanoparticle Aggregates,” J. Phys. Chem. B 110, 12673–12681 (2006).
[Crossref] [PubMed]

Goddard, W. A.

W. A. Goddard, D. W. Brenner, and S. E. Lyshevski, Handbook of Nanoscience, Engineering, and Technology (CRC Press, 2002).

Guffey, M. J.

Guyot-Sionnest, P.

Halasc, N. J.

D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[Crossref]

Hennrich, F.

R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis,” Nano Lett. 3, 1019–1023 (2003).
[Crossref]

Hirschb, L. R.

D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[Crossref]

Hoogland, S.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

Jiao, J.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Jin, P.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

John, J.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Kakiuchida, H.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

Kappes, M. M.

R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis,” Nano Lett. 3, 1019–1023 (2003).
[Crossref]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

Konstantatos, G.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

Krupke, R.

R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis,” Nano Lett. 3, 1019–1023 (2003).
[Crossref]

Lee, B.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[Crossref] [PubMed]

Lee, J.-S.

S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-Linked Nanoparticle Aggregates,” J. Phys. Chem. B 110, 12673–12681 (2006).
[Crossref] [PubMed]

Levina, L.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref] [PubMed]

Liu, J.

J. Liu and Y. Lu, “A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles” J. Am. Chem. Soc. 125, 6642 (2003).
[Crossref] [PubMed]

Liu, M.

Lohneysen, H. v.

R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis,” Nano Lett. 3, 1019–1023 (2003).
[Crossref]

Lu, Y.

J. Liu and Y. Lu, “A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles” J. Am. Chem. Soc. 125, 6642 (2003).
[Crossref] [PubMed]

Lyshevski, S. E.

W. A. Goddard, D. W. Brenner, and S. E. Lyshevski, Handbook of Nanoscience, Engineering, and Technology (CRC Press, 2002).

Lytton-Jean, A. K. R.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[Crossref] [PubMed]

Mallouk, T. E.

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

Mirkin, C. A.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[Crossref] [PubMed]

S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-Linked Nanoparticle Aggregates,” J. Phys. Chem. B 110, 12673–12681 (2006).
[Crossref] [PubMed]

Nackashi, D. P.

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

Nakao, S.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

Nieto-Vesperinas, M.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32 (2007).
[Crossref] [PubMed]

O’Neala, D. P.

D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[Crossref]

Ono, Y.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Park, S. Y.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[Crossref] [PubMed]

S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-Linked Nanoparticle Aggregates,” J. Phys. Chem. B 110, 12673–12681 (2006).
[Crossref] [PubMed]

Pauzauskie, P. J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref] [PubMed]

Paynea, J. D.

D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[Crossref]

Pelton, M.

Pesic, J.

Quidant, R.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32 (2007).
[Crossref] [PubMed]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref] [PubMed]

Reece, P. J.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Sargent, E. H.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

Schatz, G. C.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[Crossref] [PubMed]

S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-Linked Nanoparticle Aggregates,” J. Phys. Chem. B 110, 12673–12681 (2006).
[Crossref] [PubMed]

Scherer, N. F.

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref] [PubMed]

Tazawa, M.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

Torner, L.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Tour, J. M.

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

Toussaint, K. C.

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref] [PubMed]

Ulrich, B. D.

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Weber, H. B.

R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis,” Nano Lett. 3, 1019–1023 (2003).
[Crossref]

Weigand, S.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[Crossref] [PubMed]

Westb, J. L.

D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[Crossref]

Yang, P.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref] [PubMed]

Yao, Y.

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

Zelenina, A. S.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection” Appl. Phys. Lett. 86, 131921 (2005).
[Crossref]

Cancer Lett. (1)

D. P. O’Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[Crossref]

J. Am. Chem. Soc. (2)

J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, “Nanocell electronic memories,” J. Am. Chem. Soc. 125, 13279–13283 (2003).
[Crossref] [PubMed]

J. Liu and Y. Lu, “A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles” J. Am. Chem. Soc. 125, 6642 (2003).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, “Structures of DNA-Linked Nanoparticle Aggregates,” J. Phys. Chem. B 110, 12673–12681 (2006).
[Crossref] [PubMed]

L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, “Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties,” J. Phys. Chem. B 109, 13148–13153 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

Nano Lett. (1)

R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis,” Nano Lett. 3, 1019–1023 (2003).
[Crossref]

Nat. Mater. (1)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref] [PubMed]

Nature (2)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[Crossref] [PubMed]

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNAprogrammable nanoparticle crystallization,” Nature 451, 553–556 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref] [PubMed]

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32 (2007).
[Crossref] [PubMed]

Phys. Rev. B (1)

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Other (2)

M. Eagleson, Concise Encyclopedia Chemistry (Walter de Gruyter, 1994).

W. A. Goddard, D. W. Brenner, and S. E. Lyshevski, Handbook of Nanoscience, Engineering, and Technology (CRC Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) FEMLAB simulation of convective flow caused by a Gaussian-distributed heat source along a glass-water interface located at the z=0 plane, colors show change in temperature (blue 5 degree kelvin, green 10K, yellow 15K, red 20K) and streamlines show fluid velocity. (b) Simulated trajectories for a NP with combined effects from the convective flow, optical scattering force and gradient force.

Fig. 2.
Fig. 2.

Avalanche concentration with VO2 nanorods. (a) Laser excitation is initiated, at first nothing happens until a nanorod enters the spot by optical trapping or brownian motion. (b) Convective flow begins and nanorods adjacent to the spot are pulled in (2 seconds). (c) Avalanche clustering reaches full strength as the laser spot is filled with nanorods. Convective flow pulls in nanorods from over 150 µm away (5 seconds). (d) System reaches steady-state as accumulation around the spot disrupts the convective flow and the process stops (30 seconds).

Fig. 3.
Fig. 3.

Stability diagram for avalanche concentration with VO2 nanorods versus mean initial particle separation (d) and incident power (P). Stable concentration is represented by circles, metastable – diamonds and down pointing triangle, unstable – up pointing triangle, weakly stable – squares.

Fig. 4.
Fig. 4.

Optical microscopy images of an assembled VO2 bridge pre-rinse (a), and post-rinse(b). (c) SEM image of same bridge showing fused nanorods. (d) SEM image of a single nanorod aligned and fused between two electrodes. (e) SEM image of a melted VO2 cluster. I-V plots for a single nanorod bridge (f) and a bridge containing about 100 nanorods (g).

Fig. 5.
Fig. 5.

(a) SEM of an assembled CNT bridge showing fused NPs. (b) SEM image of a cluster of CdTe QDs assembled using avalanche concentration. (inset) Fluorescence image of same QD cluster.

Metrics