Abstract

We investigate experimentally and numerically the transmission resonances of electromagnetic wave through a metallic grating of periodic slits as well as an array of subwavelength holes. The far-field transmission (magnitude and phase) spectra and the detection of surface electric field are used to characterize two kinds of transmission resonances (Fabry-Perot-like and structural factor resonance) occurring to the slit grating. In addition, the comparison between the slit grating and the subwavelength hole array reveals the effect of the aperture property on the phase and field of resonantly transmitted electromagnetic wave.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  3. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  4. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen", Phys. Rev. Lett. 86, 5601-5603 (2001).
    [CrossRef] [PubMed]
  5. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]
  6. Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef] [PubMed]
  7. F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the superenhanced light transmission through a 2D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79, 1-8 (2004).
    [CrossRef]
  8. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
    [CrossRef] [PubMed]
  9. W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Phys. Rev. B 72, 153406 (2005).
    [CrossRef]
  10. J. D. Jackson, Classical Electrodynamics (3rd edition, Wiley, New York, 1999).
  11. F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
    [CrossRef]
  12. F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267 (2007).
  13. F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004).
    [CrossRef]
  14. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimetre-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
    [CrossRef] [PubMed]
  15. T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
    [CrossRef]
  16. B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
    [CrossRef]
  17. B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, "Microwave transmission through metallic hole arrays: Surface electric field measurements," Appl. Phys. Lett. 89,131917 (2006).
    [CrossRef]
  18. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
    [CrossRef] [PubMed]
  19. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
    [CrossRef]

2007 (3)

F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267 (2007).

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

2006 (2)

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, "Microwave transmission through metallic hole arrays: Surface electric field measurements," Appl. Phys. Lett. 89,131917 (2006).
[CrossRef]

Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

2005 (4)

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Phys. Rev. B 72, 153406 (2005).
[CrossRef]

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

2004 (3)

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimetre-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
[CrossRef] [PubMed]

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the superenhanced light transmission through a 2D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79, 1-8 (2004).
[CrossRef]

2003 (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

2001 (1)

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen", Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Baida, F. I.

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the superenhanced light transmission through a 2D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79, 1-8 (2004).
[CrossRef]

Belkhir, A.

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the superenhanced light transmission through a 2D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79, 1-8 (2004).
[CrossRef]

Beruete, M.

Bravo-Abad, J.

Brueck, S. R. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Campillo, I.

Chan, C. T.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, "Microwave transmission through metallic hole arrays: Surface electric field measurements," Appl. Phys. Lett. 89,131917 (2006).
[CrossRef]

W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Phys. Rev. B 72, 153406 (2005).
[CrossRef]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Dolado, J. S.

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Fan, W.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267 (2007).

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimetre-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Gómez-Medina, R.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Granet, G.

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the superenhanced light transmission through a 2D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79, 1-8 (2004).
[CrossRef]

Hang, Z. H.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, "Microwave transmission through metallic hole arrays: Surface electric field measurements," Appl. Phys. Lett. 89,131917 (2006).
[CrossRef]

Hangyo, M.

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004).
[CrossRef]

Hou, B.

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, "Microwave transmission through metallic hole arrays: Surface electric field measurements," Appl. Phys. Lett. 89,131917 (2006).
[CrossRef]

W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Phys. Rev. B 72, 153406 (2005).
[CrossRef]

Ke, M.

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Labeke, D. V.

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the superenhanced light transmission through a 2D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79, 1-8 (2004).
[CrossRef]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liu, Z.

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

Lopez-Rios, T.

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Malloy, K. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimetre-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Mei, J.

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

Mendoza, D.

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Miyamaru, F.

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004).
[CrossRef]

Moreau, A.

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the superenhanced light transmission through a 2D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79, 1-8 (2004).
[CrossRef]

Moreno, E.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Pannetier, B.

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Porto, J. A.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Qiu, M.

Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Sáenz, J. J.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Sanchez-Dehesa, J.

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Sheng, P.

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, "Microwave transmission through metallic hole arrays: Surface electric field measurements," Appl. Phys. Lett. 89,131917 (2006).
[CrossRef]

W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Phys. Rev. B 72, 153406 (2005).
[CrossRef]

Shi, J.

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

Sorolla, M.

Takakura, Y.

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen", Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Wen, W.

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, "Microwave transmission through metallic hole arrays: Surface electric field measurements," Appl. Phys. Lett. 89,131917 (2006).
[CrossRef]

W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Phys. Rev. B 72, 153406 (2005).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Zhou, L.

W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Phys. Rev. B 72, 153406 (2005).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the superenhanced light transmission through a 2D metallic annular aperture array: a study of photonic bands," Appl. Phys. B: Lasers Opt. 79, 1-8 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004).
[CrossRef]

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, "Microwave transmission through metallic hole arrays: Surface electric field measurements," Appl. Phys. Lett. 89,131917 (2006).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Nature Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Phys. Rev. B 72, 153406 (2005).
[CrossRef]

B. Hou, J. Mei, M. Ke, W. Wen, Z. Liu, J. Shi, and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent wave," Phys. Rev. B 76, 054303 (2007).
[CrossRef]

Phys. Rev. E (1)

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Phys. Rev. Lett. (6)

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen", Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267 (2007).

Science (2)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics (3rd edition, Wiley, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(color online) Photos and schematic pictures of the metallic gratings under investigation: (a) one-dimensional periodic slits and (b) two-dimensional array of subwavelength holes, where a is the periodicity, d the aperture size (slit width/hole diameter), and t the thickness of the grating. The gratings are illuminated by a plane EM wave of normal incidence with electric field along the y-direction. E 0 and H 0 denote the magnitude of the incident electric and magnetic field, respectively.

Fig. 2.
Fig. 2.

(color online) (a) Transmission magnitude and phase of EM wave through a grating of periodic slits with a=37mm, d=12mm, and t=25mm at normal incidence. (b) Snapshots of the E y distribution across a slit unit at two transmission resonances, λ=1.75a and 1.03a, in the simulation. The snapshot moment was when the field amplitude reached its maximum. Only one periodicity along the y-direction was shown. The field quantity was normalized with respect to the incident field E 0.

Fig. 3.
Fig. 3.

(color online) (a) Schematic picture of the 10 mm dipole antenna scanning the rear surface of the grating. (b) The measured magnitude distributions, |E y |, on the rear surface of the grating at two transmission resonances. (c) The simulated magnitude distributions for the corresponding resonances. Only one periodicity along the y-direction was shown. The dash lines in (a) and (b) delineate the scanning region. The field quantity in (b) and (c) was normalized with respect to the incident field E 0.

Fig. 4.
Fig. 4.

(color online) (a) Schematic picture of the 5 mm monopole antenna scanning the rear surface of the grating. (b) The measured distributions of E z component on the rear surface of the grating at two transmission resonances. (c) The simulated distributions of E z component across a slit unit for the corresponding resonances, where the snapshot moment was when the field amplitude reached its maximum. Only one periodicity along the y-direction was shown. The dash lines in (a) and (b) delineate the scanning region. The field quantity in (b) and (c) was normalized with respect to the incident field E 0.

Fig. 5.
Fig. 5.

(color online) (a1) and (b1) are the transmission magnitude and phase of normally incident EM wave through the grating of periodic slits with a=56 mm, d=18 mm, and t=19 mm, and the grating of hole array with a=20 mm, d=8 mm, and t=0.5 mm, respectively. (a2) and (b2) are the simulated E z distributions across a slit unit and a hole unit at the peak frequencies, respectively. The snapshot moment was when the field amplitude reached its maximum. Only one periodicity along the y-direction was shown. The field quantity was normalized with respect to the incident field E 0. The induced surface charges are schematically illustrated nearby.

Metrics