Abstract

Placing a quantum well modulator in an asymmetric Fabry-Perot cavity enables significantly higher contrast ratios than are possible in a conventional surface-normal quantum well modulator. However, fixed-cavity asymmetric Fabry-Perot quantum well modulators require extremely precise and uniform crystal growth and are sensitive to small fluctuations in temperature or angle of incidence. Here, we experimentally demonstrate an InP-based microelectromechanically tunable asymmetric Fabry-Perot quantum well modulator that operates in the optical C-band. By actuating a suspended InGaAlAs reflector, the cavity mode can be perfectly matched to the appropriate quantum well absorption wavelength. The devices exhibit contrast ratios over 30 (15 dB) at 8 volts quantum well bias and modulation speeds of 1 MHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, "Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures," IEEE Photon. Technol. Lett. 18, 214-216 (2006).
    [CrossRef]
  2. R. N. Pathak, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, "InGaAs-InP (MQW)-N Surface-Normal Electroabsorption Modulators Exhibiting Better Than 8:1 Contrast Ratio for 1.55 μm Applications Grown by Gas-Source MBE," IEEE Photon. Technol. Lett. 6, 1439-1441 (1994).
    [CrossRef]
  3. T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16, 2036-2038 (2004).
    [CrossRef]
  4. W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, J. H. Ray Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, "45-Mbit/s cat’s-eye modulating retroreflectors," Opt. Eng. 46, 104001 (2007).
    [CrossRef]
  5. H. Liu, C. C. Lin, and J. S. Harris, "High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects," Opt. Eng. 40, 1186-1191 (2001).
    [CrossRef]
  6. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, "Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells," Opt. Lett. 22, 718-720 (1997).
    [CrossRef] [PubMed]
  7. P. G. Goetz, R. Mahon, T. H. Stievater, W. S. Rabinovich, and S. C. Binari, "High-Speed Large Area Surface-Normal Multiple Quantum Well Modulators," in Free-Space Laser Comm. & Active Laser Illumination III, D. G. Voelz and J. C. Ricklin, eds., pp. 346-354 (2004).
  8. M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, and C. Button, "Low-voltage multiple quantum well reflection modulator with on-off ratio greater than 100:1," Electron. Lett. 25, 984-985 (1989).
    [CrossRef]
  9. S. J. B. Yoo, M. A. Koza, R. Bhat, and C. Caneau, "1.5 μm asymmetric Fabry-Perot modulators with two distinct modulation and chirp characteristics," Appl. Phys. Lett. 72, 3246-3248 (1998).
    [CrossRef]
  10. R. I. Killey, C. P. Liu, M. Whitehead, P. Stavrinou, J. B. Song, J. S. Chadha, D. Wake, C. C. Button, G. Parry, and A. J. Seeds, "Multiple-Quantum-Well Asymmetric Fabry-Perot Modulators for Microwave Photonic Applications," IEEE Trans. Microwave Theory Tech. 49, 1888-1892 (2001).
    [CrossRef]
  11. G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, "Long-Wavelength Resonant Vertical-Cavity LED/Photodetector with a 75-nm Tuning Range," IEEE Photon. Technol. Lett. 9, 725-727 (1997).
    [CrossRef]
  12. Q. Chen, G. D. Cole, E. S. Bjorlin, T. Kimura, S. Wu, C. S. Wang, N. C. MacDonald, and J. Bowers, "First demonstration of a MEMS tunable vertical-cavity SOA," IEEE Photon. Technol. Lett. 16, 1438-1440 (2004).
    [CrossRef]
  13. D. Vakhshoori, P. Tayebati, C.-C. Lu, M. Azimi, P. Wang, J.-H. Zhou, and E. Canoglu, "2 mW CW single-mode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range," Electron. Lett. 35, 900-901 (1999).
    [CrossRef]
  14. W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, "Demonstration of a microelectromechanical tunable asymmetric Fabry-Perot quantum well modulator," Appl. Phys. Lett. 83, 1923-1925 (2003).
    [CrossRef]
  15. M. H. M. Reddy, T. Asano, R. Koda, D. A. Buell, and L. A. Coldren, "Molecular beam epitaxy-grown Al-GaInAs/InP distributed Bragg reflectors for 1.55 μm VCSELs," Electron. Lett. 38, 1181-1182 (2002).
    [CrossRef]

Other

H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, "Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures," IEEE Photon. Technol. Lett. 18, 214-216 (2006).
[CrossRef]

R. N. Pathak, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, "InGaAs-InP (MQW)-N Surface-Normal Electroabsorption Modulators Exhibiting Better Than 8:1 Contrast Ratio for 1.55 μm Applications Grown by Gas-Source MBE," IEEE Photon. Technol. Lett. 6, 1439-1441 (1994).
[CrossRef]

T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16, 2036-2038 (2004).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, J. H. Ray Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, "45-Mbit/s cat’s-eye modulating retroreflectors," Opt. Eng. 46, 104001 (2007).
[CrossRef]

H. Liu, C. C. Lin, and J. S. Harris, "High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects," Opt. Eng. 40, 1186-1191 (2001).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, "Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells," Opt. Lett. 22, 718-720 (1997).
[CrossRef] [PubMed]

P. G. Goetz, R. Mahon, T. H. Stievater, W. S. Rabinovich, and S. C. Binari, "High-Speed Large Area Surface-Normal Multiple Quantum Well Modulators," in Free-Space Laser Comm. & Active Laser Illumination III, D. G. Voelz and J. C. Ricklin, eds., pp. 346-354 (2004).

M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, and C. Button, "Low-voltage multiple quantum well reflection modulator with on-off ratio greater than 100:1," Electron. Lett. 25, 984-985 (1989).
[CrossRef]

S. J. B. Yoo, M. A. Koza, R. Bhat, and C. Caneau, "1.5 μm asymmetric Fabry-Perot modulators with two distinct modulation and chirp characteristics," Appl. Phys. Lett. 72, 3246-3248 (1998).
[CrossRef]

R. I. Killey, C. P. Liu, M. Whitehead, P. Stavrinou, J. B. Song, J. S. Chadha, D. Wake, C. C. Button, G. Parry, and A. J. Seeds, "Multiple-Quantum-Well Asymmetric Fabry-Perot Modulators for Microwave Photonic Applications," IEEE Trans. Microwave Theory Tech. 49, 1888-1892 (2001).
[CrossRef]

G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, "Long-Wavelength Resonant Vertical-Cavity LED/Photodetector with a 75-nm Tuning Range," IEEE Photon. Technol. Lett. 9, 725-727 (1997).
[CrossRef]

Q. Chen, G. D. Cole, E. S. Bjorlin, T. Kimura, S. Wu, C. S. Wang, N. C. MacDonald, and J. Bowers, "First demonstration of a MEMS tunable vertical-cavity SOA," IEEE Photon. Technol. Lett. 16, 1438-1440 (2004).
[CrossRef]

D. Vakhshoori, P. Tayebati, C.-C. Lu, M. Azimi, P. Wang, J.-H. Zhou, and E. Canoglu, "2 mW CW single-mode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range," Electron. Lett. 35, 900-901 (1999).
[CrossRef]

W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, "Demonstration of a microelectromechanical tunable asymmetric Fabry-Perot quantum well modulator," Appl. Phys. Lett. 83, 1923-1925 (2003).
[CrossRef]

M. H. M. Reddy, T. Asano, R. Koda, D. A. Buell, and L. A. Coldren, "Molecular beam epitaxy-grown Al-GaInAs/InP distributed Bragg reflectors for 1.55 μm VCSELs," Electron. Lett. 38, 1181-1182 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a): A schematic of an InP-based MEMS tunable asymmetric Fabry-Perot quantum well modulator. (b): An SEM image of a fabricated modulator with a suspended micro-bridge mirror.

Fig. 2.
Fig. 2.

InGaAlAs microbridge height (at bridge center) as a function of the voltage applied between the bridge contact and ground (V bridge). The microbridge is 6 µm wide and 120 µm long.

Fig. 3.
Fig. 3.

The calculated (a) and measured (b) reflectivity spectra from the asymmetric Fabry-Perot quantum well modulator at a released micro-bridge. V bridge=5 V approximately satisfies the cavity matching condition for this device. The calculated reflectance spectrum is obtained from a transfer matrix calculation with device parameters (layer thicknesses, quantum well wavelength, etc.) that are measured independently.

Fig. 4.
Fig. 4.

(a): Measured reflectivity spectra for VQW=0 V and VQW=8 V at a microbridge height corresponding to the cavity matching condition (Vbridge=4.8 V). (b): Contrast ratio spectra (VQW modulation between 0 V and 8 V) for a range of microbridge heights.

Fig. 5.
Fig. 5.

Maximum contrast ratios measured at fixed wavelengths between 1549 nm and 1560 nm. Different microbridge heights are required to maximize the contrast ratio at different wavelengths. Note that for some data, the cavity matching condition is achieved for VQW set slighty above 0 V. Also shown is the measured insertion loss (the reflectivity at VQW= 8 V) at each wavelength.

Fig. 6.
Fig. 6.

Reflected optical power vs. time for a 1 MHz, 0V to 8V sine wave applied to VQW. Vbridge=5.8 V is the matching condition for this device, showing modulation with high extinction. Vbridge=2.0 V is shown to illustrate the signal without proper cavity tuning.

Metrics