Abstract

Broadband THz pulses have been generated in 2-[3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene]malononitrile (OH1) by optical rectification of sub-picosecond laser pulses. We show that OH1 crystals allow velocity-matched generation and detection of THz frequencies in the whole range between 0.3 and 2.5 THz for a pump laser wavelength range from 1200 to 1460 nm. OH1 crystals show a higher figure of merit for THz generation and detection in the optimized range compared to the benchmark inorganic semiconductor crystals ZnTe and GaAs and the organic ionic salt crystal 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate (DAST). The material shows a low THz absorption coefficient α3 in the range between 0.3 and 2.5 THz, reaching values lower than 0.2mm-1 between 0.7 and 1.0 THz. This is similar as in ZnTe and GaAs, but much lower than in DAST in the respective optimum frequency range. A peak THz electric field of 100 kV/cm and a photon conversion efficiency of 11 percent have been achieved at a pump pulse energy of 45 µJ.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  2. Q. Wu and X.-C. Zhang, “Design and characterization of traveling-wave electrooptic terahertz sensors,” IEEE J. Sel. Top. Quantum Electron. 2, 693–700 (1996).
    [CrossRef]
  3. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822–1835 (2006).
    [CrossRef]
  4. A. Schneider, M. Stillhart, and P. Günter, “High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express 14, 5376–5384 (2006).
    [CrossRef] [PubMed]
  5. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25, 911–913 (2000).
    [CrossRef]
  6. M. Stillhart, A. Schneider, and P. Günter, “Optical properties of 4-N,N-dimethylamino-4′-N′-methyl 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies,” J. Opt. Soc. Am. B (to be published).
  7. O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
    [CrossRef]
  8. O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
    [PubMed]
  9. Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).
  10. F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
    [CrossRef]
  11. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  12. A. Schneider, I. Biaggio, and P. Günter, “Terahertz-induced lensing and its use for the detection of terahertz pulses in a birefringent crystal,” Appl. Phys. Lett. 84, 2229–2231 (2004).
    [CrossRef]
  13. M. Fox, Optical properties of solids (Oxford University Press, New York, 2003).
  14. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).
  15. A. Schneider, M. Stillhart, Z. Yang, F. Brunner, and P. Günter, “Improved emission and coherent detection of few-cycle terahertz transients using laser pulses at 1.5 µm,” Proc. SPIE6582, 658211 (2007).
  16. T. R. Sliker and J. M. Jost, “Linear electro-optic effect and refractive indices of cubic ZnTe,” J. Opt. Soc. Am. 56, 130–131 (1966).
    [CrossRef]
  17. M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
    [CrossRef]
  18. M. A. Afromowitz, “Refractive index of Ga1-xAlxAs,” Solid State Commun. 15, 59–63 (1974).
    [CrossRef]
  19. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
    [CrossRef]
  20. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  21. N. Suzuki and K. Tada, “Elastooptic and electrooptic properties of GaAs,” Jpn. J. Appl. Phys. 23, 1011–1016 (1984).
    [CrossRef]
  22. A. Schneider and P. Günter, “Measurement of the terahertz-induced phase shift in electro-optic sampling for an arbitrary biasing phase,” Appl. Opt. 45, 6598–6601 (2006).
    [CrossRef] [PubMed]
  23. J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1976).
    [CrossRef]
  24. L. S. Rothmanet al., “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectros. Radiat. Transfer 96, 139–204 (2005).
    [CrossRef]

2007 (2)

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

A. Schneider, M. Stillhart, Z. Yang, F. Brunner, and P. Günter, “Improved emission and coherent detection of few-cycle terahertz transients using laser pulses at 1.5 µm,” Proc. SPIE6582, 658211 (2007).

2006 (3)

2005 (1)

L. S. Rothmanet al., “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectros. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

2004 (2)

A. Schneider, I. Biaggio, and P. Günter, “Terahertz-induced lensing and its use for the detection of terahertz pulses in a birefringent crystal,” Appl. Phys. Lett. 84, 2229–2231 (2004).
[CrossRef]

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

2001 (1)

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

2000 (1)

1996 (3)

Q. Wu and X.-C. Zhang, “Design and characterization of traveling-wave electrooptic terahertz sensors,” IEEE J. Sel. Top. Quantum Electron. 2, 693–700 (1996).
[CrossRef]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

1990 (1)

1984 (1)

N. Suzuki and K. Tada, “Elastooptic and electrooptic properties of GaAs,” Jpn. J. Appl. Phys. 23, 1011–1016 (1984).
[CrossRef]

1976 (1)

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1976).
[CrossRef]

1974 (1)

M. A. Afromowitz, “Refractive index of Ga1-xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

1966 (1)

Afromowitz, M. A.

M. A. Afromowitz, “Refractive index of Ga1-xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

Bechtel, J. H.

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1976).
[CrossRef]

Bessho, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Biaggio, I.

A. Schneider, I. Biaggio, and P. Günter, “Terahertz-induced lensing and its use for the detection of terahertz pulses in a birefringent crystal,” Appl. Phys. Lett. 84, 2229–2231 (2004).
[CrossRef]

Bosshard, Ch.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Brunner, F.

A. Schneider, M. Stillhart, Z. Yang, F. Brunner, and P. Günter, “Improved emission and coherent detection of few-cycle terahertz transients using laser pulses at 1.5 µm,” Proc. SPIE6582, 658211 (2007).

Brunner, F. D. J.

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Fattinger, Ch.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Figi, H.

Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).

Follonier, S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Fox, M.

M. Fox, Optical properties of solids (Oxford University Press, New York, 2003).

Gramlich, V.

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

Grischkowsky, D.

Günter, P.

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

A. Schneider, M. Stillhart, Z. Yang, F. Brunner, and P. Günter, “Improved emission and coherent detection of few-cycle terahertz transients using laser pulses at 1.5 µm,” Proc. SPIE6582, 658211 (2007).

A. Schneider, M. Stillhart, and P. Günter, “High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express 14, 5376–5384 (2006).
[CrossRef] [PubMed]

A. Schneider and P. Günter, “Measurement of the terahertz-induced phase shift in electro-optic sampling for an arbitrary biasing phase,” Appl. Opt. 45, 6598–6601 (2006).
[CrossRef] [PubMed]

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822–1835 (2006).
[CrossRef]

A. Schneider, I. Biaggio, and P. Günter, “Terahertz-induced lensing and its use for the detection of terahertz pulses in a birefringent crystal,” Appl. Phys. Lett. 84, 2229–2231 (2004).
[CrossRef]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

M. Stillhart, A. Schneider, and P. Günter, “Optical properties of 4-N,N-dimethylamino-4′-N′-methyl 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies,” J. Opt. Soc. Am. B (to be published).

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Hirosumi, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Hunziker, Ch.

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).

Ito, H.

Jazbinšek, M.

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).

Jensby, K.

Jepsen, P. U.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Jost, J. M.

Juvalta, F.

Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).

Keiding, S.

Keiding, S. R.

Khan, R. U. A.

Knöpfle, G.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Kwon, O-P.

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).

Kwon, S.-J.

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).

Lee, Y. S.

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Nagai, M.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Neis, M.

Ohtake, H.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Pan, F.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Rothman, L. S.

L. S. Rothmanet al., “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectros. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Ruiz, B.

Schall, M.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Schneider, A.

A. Schneider, M. Stillhart, Z. Yang, F. Brunner, and P. Günter, “Improved emission and coherent detection of few-cycle terahertz transients using laser pulses at 1.5 µm,” Proc. SPIE6582, 658211 (2007).

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

A. Schneider, M. Stillhart, and P. Günter, “High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express 14, 5376–5384 (2006).
[CrossRef] [PubMed]

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822–1835 (2006).
[CrossRef]

A. Schneider and P. Günter, “Measurement of the terahertz-induced phase shift in electro-optic sampling for an arbitrary biasing phase,” Appl. Opt. 45, 6598–6601 (2006).
[CrossRef] [PubMed]

A. Schneider, I. Biaggio, and P. Günter, “Terahertz-induced lensing and its use for the detection of terahertz pulses in a birefringent crystal,” Appl. Phys. Lett. 84, 2229–2231 (2004).
[CrossRef]

M. Stillhart, A. Schneider, and P. Günter, “Optical properties of 4-N,N-dimethylamino-4′-N′-methyl 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies,” J. Opt. Soc. Am. B (to be published).

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Seo, J. I.

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).

Sliker, T. R.

Smith, W. L.

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1976).
[CrossRef]

Spreiter, R.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Stillhart, M.

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

A. Schneider, M. Stillhart, Z. Yang, F. Brunner, and P. Günter, “Improved emission and coherent detection of few-cycle terahertz transients using laser pulses at 1.5 µm,” Proc. SPIE6582, 658211 (2007).

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822–1835 (2006).
[CrossRef]

A. Schneider, M. Stillhart, and P. Günter, “High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express 14, 5376–5384 (2006).
[CrossRef] [PubMed]

M. Stillhart, A. Schneider, and P. Günter, “Optical properties of 4-N,N-dimethylamino-4′-N′-methyl 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies,” J. Opt. Soc. Am. B (to be published).

Sugiura, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Suzuki, N.

N. Suzuki and K. Tada, “Elastooptic and electrooptic properties of GaAs,” Jpn. J. Appl. Phys. 23, 1011–1016 (1984).
[CrossRef]

Tada, K.

N. Suzuki and K. Tada, “Elastooptic and electrooptic properties of GaAs,” Jpn. J. Appl. Phys. 23, 1011–1016 (1984).
[CrossRef]

Takahashi, H.

Tanaka, K.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

van Exter, M.

Walther, M.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25, 911–913 (2000).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Wong, M. S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, “Design and characterization of traveling-wave electrooptic terahertz sensors,” IEEE J. Sel. Top. Quantum Electron. 2, 693–700 (1996).
[CrossRef]

Yang, Z.

A. Schneider, M. Stillhart, Z. Yang, F. Brunner, and P. Günter, “Improved emission and coherent detection of few-cycle terahertz transients using laser pulses at 1.5 µm,” Proc. SPIE6582, 658211 (2007).

Yoshida, M.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Yun, H.

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Q. Wu and X.-C. Zhang, “Design and characterization of traveling-wave electrooptic terahertz sensors,” IEEE J. Sel. Top. Quantum Electron. 2, 693–700 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

A. Schneider, I. Biaggio, and P. Günter, “Terahertz-induced lensing and its use for the detection of terahertz pulses in a birefringent crystal,” Appl. Phys. Lett. 84, 2229–2231 (2004).
[CrossRef]

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Cryst. Growth Des. (1)

O-P. Kwon, S.-J. Kwon, M. Stillhart, M. Jazbinšek, A. Schneider, V. Gramlich, and P. Günter, “New organic nonlinear optical verbenone-based triene crystal for terahertz applications,” Cryst. Growth Des. 7, 2517–2521 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Q. Wu and X.-C. Zhang, “Design and characterization of traveling-wave electrooptic terahertz sensors,” IEEE J. Sel. Top. Quantum Electron. 2, 693–700 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Quant. Spectros. Radiat. Transfer (1)

L. S. Rothmanet al., “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectros. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Suzuki and K. Tada, “Elastooptic and electrooptic properties of GaAs,” Jpn. J. Appl. Phys. 23, 1011–1016 (1984).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1976).
[CrossRef]

Proc. SPIE (1)

A. Schneider, M. Stillhart, Z. Yang, F. Brunner, and P. Günter, “Improved emission and coherent detection of few-cycle terahertz transients using laser pulses at 1.5 µm,” Proc. SPIE6582, 658211 (2007).

Solid State Commun. (1)

M. A. Afromowitz, “Refractive index of Ga1-xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

Other (5)

O-P. Kwon, S.-J. Kwon, M. Jazbinšek, F. D. J. Brunner, J. I. Seo, Ch. Hunziker, A. Schneider, H. Yun, Y. S. Lee, and P. Günter, “Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications,” Adv. Funct. Mater. (to be published).
[PubMed]

Ch. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O-P. Kwon, M. Jazbinšek, and P. Günter, “Configurationally locked, phenolic polyene organic crystal OH1: linear and nonlinear optical properties,” J. Opt. Soc. Am. B (in press).

M. Stillhart, A. Schneider, and P. Günter, “Optical properties of 4-N,N-dimethylamino-4′-N′-methyl 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies,” J. Opt. Soc. Am. B (to be published).

M. Fox, Optical properties of solids (Oxford University Press, New York, 2003).

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The chemical structure of the molecule OH1.

Fig. 2.
Fig. 2.

(a) Absorption coefficient α 3 and (b) refractive index n 3 of THz waves polarized along the c-axis. Diamonds: measured data. Solid lines: best fit to the measured data using a Lorentz four-oscillator model [13] (see Eqs. (1)–(3) and Table 1). Dashed line: optical group index n g, c calculated with parameters from Ref. [9] as a function of wavelength (upper scale).

Fig. 3.
Fig. 3.

(a) Absorption coefficient α 2 and (b) refractive index n 2 of THz waves polarized along the b-axis. Diamonds: measured data. Solid lines: best fit to the measured data using a Lorentz three-oscillator model [13] (see Eqs. (1)(3) and Table 2).

Fig. 4.
Fig. 4.

(a) Optimum OH1 crystal length l optimum(ω,λ) for the generation of THz pulses (see Eq. (9b)); (b) the corresponding maximum effective generation length l max(ω,λ) (see Eq. (9a)). The values of the contour lines are in units of mm.

Fig. 5.
Fig. 5.

THz pulse emitted from OH1 exploiting χ (2) 333 and detected in ZnTe (red line). (a) Time domain and (b) frequency domain signal. THz pulse emitted from DAST exploiting χ (2) 111 under identical conditions for comparison (black line; see text for details).

Fig. 6.
Fig. 6.

THz pulses generated and detected in OH1 crystals using optical pulses at a wavelength of 1300 nm for different pump pulse energies. The ratio of the center intensities of the probe beam with and without THz electric fieldW(E)/W(E=0)=m(E)+1 is plotted on a logarithmic scale as a function of time.

Fig. 7.
Fig. 7.

THz spectra generated and detected in 1mm thick OH1 crystals using different wavelengths, normalized to their maximum values. (a) Measurements; (b) calculation.

Tables (3)

Tables Icon

Table 1. Parameters for the refractive index n 3 and the absorption coefficient α 3 of OH1 in the Lorentz-model. a,b

Tables Icon

Table 2. Parameters for the refractive index n2 and the absorption coefficient α2 of OH1 in the Lorentz-model. a,b

Tables Icon

Table 3. Overall figure of merit (FoM) for generation and detection of THz pulses and other relevant parameters of OH1 in comparison with commonly used electrooptic crystals.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε + Σ j = 1 m ω j 2 f j ( ω j 2 ω 2 ) ( ω j 2 ω 2 ) 2 + γ j 2 ω 2
ε ( ω ) = Σ j = 1 m ω j 2 f j γ j ω ( ω j 2 ω 2 ) 2 + γ j 2 ω 2 ,
n ( ω ) = 1 2 ( ε ( ω ) 2 + ε ( ω ) 2 + ε ( ω ) )
α ( ω ) = 2 ω c 1 2 ( ε ( ω ) 2 + ε ( ω ) 2 ε ( ω ) ) ,
r iij ( ω , λ ) = 2 χ jii ( 2 ) ( ω , λ ) n o , i 4 ( λ ) ,
E THz ( ω ) = μ 0 χ ( 2 ) ( ω , λ ) ω I ( ω ) n o ( λ ) [ c ω ( α T ( ω ) 2 + α o ( λ ) ) + i ( n T ( ω ) + n g ( λ ) ) ] l gen ( ω , λ , l ) ,
l gen ( ω , λ , l ) =
( exp ( 2 α o ( λ ) l ) + exp ( α T ( ω ) l ) 2 exp ( [ α o ( λ ) + α T ( ω ) 2 ] l ) cos ( π l l c ( ω , λ ) ) ( α T ( ω ) 2 α o ( λ ) ) 2 + ( π l c ( ω , λ ) ) 2 ) 1 2 ,
l c ( ω , λ ) = π c ω n T ( ω ) n g ( λ ) .
l gen ( ω , λ , l ) = sin c ( π l 2 l c ( ω , λ ) ) l .
l max ( ω , λ ) : = max l l gen ( ω , λ , l ) ,
l max ( ω , λ ) l gen ( ω , λ , l optimum ) .
Δ ϕ ( ω ) = π λ n o 3 ( λ ) r ( ω , λ ) A ( ω ) l gen ( ω , λ , l ) E THz ( ω ) ,
FoM = b 4 n o 7 ( λ vm ) r 2 ( 1 + n o ( λ vm ) ) 2 ( 1 + n g ( λ vm ) ) 2 ,
b = { 1 for standard electrooptic sampling in cubic crystals ( e . g . ZnTe or GaAs ) , 1 4 for electrooptic sampling in birefringent crystals ,
E = 2 λ n o 3 r l π m ( E ) ,
W THz = ρ 0 2 π ε 0 c 8 ln 2 E ( ν ) 2 T ( ν ) d ν ,
T ( ν ) = 4 n T ( ν ) ( 1 + n T ( ν ) ) 2 .

Metrics