Abstract

We demonstrate by numerical simulations and experiments that highly reflective (HR) facets can be formed on silicon waveguides with high reflectivity diffraction gratings. We use an HR grating with a plane wave reflectivity exceeding 99.99%, as calculated by rigorous coupled wave analysis. Experimentally, we demonstrate the HR effect for silicon-on-insulator waveguide facets patterned lithographically with grating structures. Due to a strong mode size dependence, the maximum facet reflectivity for 1.5 µm thick waveguide is 77%, but finite difference time-domain simulations show that modal reflectivies larger than 90% can be achieved for silicon waveguides with thicknesses of 4 µm or more.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, and D.-X. Xu, "Gradient-index antireflective subwavelength structures for planar waveguide facets," Opt. Lett. 32, 1794-1796 (2007).
    [CrossRef] [PubMed]
  2. H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 1063-73 (2003).
    [CrossRef]
  3. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
    [CrossRef]
  4. M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
    [CrossRef]
  5. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
    [CrossRef]
  6. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]
  7. The RODIS software package, developed by the Photonics Research Group at the University of Ghent, Belgium, is available for download from their website: http://www.photonics.intec.ugent.be/research/facilities/design/rodis/default.htm.
  8. D. Delbeke, R. Baets, and P. Muys, "Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating," Appl. Opt. 43, 6157-6165 (2004).
    [CrossRef] [PubMed]
  9. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
    [CrossRef]
  10. B. Faraji, E. Bisaillon, D. T. H. Tan, D. Plant, and L. Chrostowski, "Finite-size resonant sub-wavelength grating high reflectivity mirror," Lasers and Electro-Optics Society, IEEE, Oct 2006, pp. 845-846 (2006).

2007 (2)

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, and D.-X. Xu, "Gradient-index antireflective subwavelength structures for planar waveguide facets," Opt. Lett. 32, 1794-1796 (2007).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

2004 (2)

D. Delbeke, R. Baets, and P. Muys, "Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating," Appl. Opt. 43, 6157-6165 (2004).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

2003 (1)

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 1063-73 (2003).
[CrossRef]

1998 (1)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

1981 (1)

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Baets, R.

D. Delbeke, R. Baets, and P. Muys, "Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating," Appl. Opt. 43, 6157-6165 (2004).
[CrossRef] [PubMed]

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Boons, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

Caekebeke, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

Chang-Hasnain, C.

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Cheben, P.

Delbeke, D.

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Dhoedt, B.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

Gaylord, T. K.

Goeman, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Janz, S.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Kikuta, H.

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 1063-73 (2003).
[CrossRef]

Lapointe, J.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Moharam, M. G.

Muys, P.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Post, E.

Schmid, J. H.

Toyota, H.

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 1063-73 (2003).
[CrossRef]

Van Daele, P.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

Vandeputte, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

Xu, D.-X.

Yu, W.

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 1063-73 (2003).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, "First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL??s," IEEE Photon. Technol. Lett. 10, 1205-1207 (1998).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 1063-73 (2003).
[CrossRef]

Other (2)

The RODIS software package, developed by the Photonics Research Group at the University of Ghent, Belgium, is available for download from their website: http://www.photonics.intec.ugent.be/research/facilities/design/rodis/default.htm.

B. Faraji, E. Bisaillon, D. T. H. Tan, D. Plant, and L. Chrostowski, "Finite-size resonant sub-wavelength grating high reflectivity mirror," Lasers and Electro-Optics Society, IEEE, Oct 2006, pp. 845-846 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Diffraction efficiency of square silicon surface gratings with a period of 0.7 µm and a duty cycle of 54% for plane waves with a wavelength λ=1.55 µm at normal incidence according to RCWA as a function of grating modulation depth and wavelength. a) 0th order transmission (T0) and reflection (R0) and 1st order reflection (R1) for waves incident from the silicon side and b) with light incident from air. c) 0th order (specular) reflection for light incident from silicon as a function of wavelength for a modulation depth of 0.47 µm, corresponding to the reflection peak indicated by the arrow in a).

Fig. 2.
Fig. 2.

FDTD simulations of light propagation in waveguides terminated with high reflectivity grating facets. a) Simulation layout. b) Electric field map of the TM mode (electric field in the plane of the drawing) launched towards the right from the excitation plane and reflected by the facet. c) Simulation of fiber-to-waveguide coupling with a Gaussian beam launched towards the left from the excitation plane.

Fig. 3.
Fig. 3.

Scanning electron micrograph of a SOI ridge waveguide facet patterned with an HR grating.

Fig. 4.
Fig. 4.

(a). Schematic top view of the waveguide test structure used in transmission measurements. (b). The optical model for a lossy asymmetric Fabry-Pérot cavity with an input mirror reflectivity of 31%, corresponding to the reflectivity of the flat input facet and a variable back mirror reflectivity. (c). The depth of the Fabry-Pérot fringes as a function of the back mirror reflectivity.

Fig. 5.
Fig. 5.

Left: Experimentally measured Fabry-Pérot fringes in the waveguide transmission spectra for three different back facets: a) Patterned AR with a nominal reflectivity of 3.6%, b) flat reference facet, and c) HR grating facet with a modulation depth of 0.35 µm and a duty ratio of 0.5. Right: Facet reflectivity as a function of grating modulation depth inferred from the Fabry-Pérot measurements compared to 3D FDTD simulations.

Fig. 6.
Fig. 6.

(a). Grating specular reflectivity as a function of incident angle according to RCWA compared to 3D FDTD results for facet reflectivity as a function of waveguide thickness. Inset: Mean angle of incidence as a function of silicon slab waveguide thickness as discussed in the text. b) Grating illumination geometry for the RCWA calculations.

Metrics