Abstract

We present the polarization resolved, angular dependent, optical reflectance properties for single TE mode optical waveguides in contact with a nanostructured gold surface. A substantial angle dependent resonant decrease in the TE polarized surface reflectivity is measured which cannot be explained by a simple waveguide coupling due to surface roughness. Rather we show that the resonance is due to the excitation of a coupled waveguide-plasmonic surface mode created by the interaction between the metal nanostructure and the waveguide. A model based on coupled mode theory is introduced in order to explain the experimental data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, (1986).
  3. A. V. Zayats, and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A 5, S16-S50 (2003).
    [CrossRef]
  4. D. Porath, O. Millo, and J. I. Gersten, "Scanning tunneling microscopy studies and computer simulations of annealing of gold films," J. Vac. Sci. Technol. B 14, 30-37 (1996).
    [CrossRef]
  5. F. Ladouceur, "Roughness, inhomogeneity, and integrated optics," J. Lightwave Technol. 15, 1020-1025 (1997).
    [CrossRef]
  6. R. Sainidou, and F. J. G. de Abajo, "Plasmon guided modes in nanoparticle metamaterials," Opt. Express 16, 4499-4506 (2008).
    [CrossRef] [PubMed]
  7. A. Adams, J. Moreland, P. K. Hansma, and Z. Schlesinger, "Light-Emission from Surface-Plasmon and Waveguide Modes Excited by N-Atoms near a Silver Grating," Phys. Rev. B 25, 3457-3461 (1982).
    [CrossRef]
  8. R. G. Hunsperger, Integrated Optics: theory and technology (Springer-Verlag, Berlin, 1991).
  9. C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, Hoboken, NJ, 2005).
  10. D. N. Jarrett, and L. Ward, "Optical-Properties of Discontinuous Gold-Films," J. Phys. D Appl. Phys. 9, 1515-1527 (1976).
    [CrossRef]
  11. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, (2003).
  12. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).
  13. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, "Optical Properties of Granular Silver and Gold Films," Phys. Rev. B 8, 3689 (1973).
    [CrossRef]
  14. A. Yariv, "Coupled-Mode Theory for Guided-Wave Optics," IEEE J. Quantum Elect. QE 9, 919-933 (1973).

2008 (1)

2003 (2)

A. V. Zayats, and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A 5, S16-S50 (2003).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, (2003).

1997 (1)

F. Ladouceur, "Roughness, inhomogeneity, and integrated optics," J. Lightwave Technol. 15, 1020-1025 (1997).
[CrossRef]

1996 (1)

D. Porath, O. Millo, and J. I. Gersten, "Scanning tunneling microscopy studies and computer simulations of annealing of gold films," J. Vac. Sci. Technol. B 14, 30-37 (1996).
[CrossRef]

1982 (1)

A. Adams, J. Moreland, P. K. Hansma, and Z. Schlesinger, "Light-Emission from Surface-Plasmon and Waveguide Modes Excited by N-Atoms near a Silver Grating," Phys. Rev. B 25, 3457-3461 (1982).
[CrossRef]

1976 (1)

D. N. Jarrett, and L. Ward, "Optical-Properties of Discontinuous Gold-Films," J. Phys. D Appl. Phys. 9, 1515-1527 (1976).
[CrossRef]

1973 (2)

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, "Optical Properties of Granular Silver and Gold Films," Phys. Rev. B 8, 3689 (1973).
[CrossRef]

A. Yariv, "Coupled-Mode Theory for Guided-Wave Optics," IEEE J. Quantum Elect. QE 9, 919-933 (1973).

Abeles, B.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, "Optical Properties of Granular Silver and Gold Films," Phys. Rev. B 8, 3689 (1973).
[CrossRef]

Adams, A.

A. Adams, J. Moreland, P. K. Hansma, and Z. Schlesinger, "Light-Emission from Surface-Plasmon and Waveguide Modes Excited by N-Atoms near a Silver Grating," Phys. Rev. B 25, 3457-3461 (1982).
[CrossRef]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, (2003).

Cody, G. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, "Optical Properties of Granular Silver and Gold Films," Phys. Rev. B 8, 3689 (1973).
[CrossRef]

Cohen, R. W.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, "Optical Properties of Granular Silver and Gold Films," Phys. Rev. B 8, 3689 (1973).
[CrossRef]

Coutts, M. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, "Optical Properties of Granular Silver and Gold Films," Phys. Rev. B 8, 3689 (1973).
[CrossRef]

de Abajo, F. J. G.

Gersten, J. I.

D. Porath, O. Millo, and J. I. Gersten, "Scanning tunneling microscopy studies and computer simulations of annealing of gold films," J. Vac. Sci. Technol. B 14, 30-37 (1996).
[CrossRef]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, (2003).

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, (2003).

Hansma, P. K.

A. Adams, J. Moreland, P. K. Hansma, and Z. Schlesinger, "Light-Emission from Surface-Plasmon and Waveguide Modes Excited by N-Atoms near a Silver Grating," Phys. Rev. B 25, 3457-3461 (1982).
[CrossRef]

Jarrett, D. N.

D. N. Jarrett, and L. Ward, "Optical-Properties of Discontinuous Gold-Films," J. Phys. D Appl. Phys. 9, 1515-1527 (1976).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, (2003).

Ladouceur, F.

F. Ladouceur, "Roughness, inhomogeneity, and integrated optics," J. Lightwave Technol. 15, 1020-1025 (1997).
[CrossRef]

Millo, O.

D. Porath, O. Millo, and J. I. Gersten, "Scanning tunneling microscopy studies and computer simulations of annealing of gold films," J. Vac. Sci. Technol. B 14, 30-37 (1996).
[CrossRef]

Moreland, J.

A. Adams, J. Moreland, P. K. Hansma, and Z. Schlesinger, "Light-Emission from Surface-Plasmon and Waveguide Modes Excited by N-Atoms near a Silver Grating," Phys. Rev. B 25, 3457-3461 (1982).
[CrossRef]

Porath, D.

D. Porath, O. Millo, and J. I. Gersten, "Scanning tunneling microscopy studies and computer simulations of annealing of gold films," J. Vac. Sci. Technol. B 14, 30-37 (1996).
[CrossRef]

Sainidou, R.

Schlesinger, Z.

A. Adams, J. Moreland, P. K. Hansma, and Z. Schlesinger, "Light-Emission from Surface-Plasmon and Waveguide Modes Excited by N-Atoms near a Silver Grating," Phys. Rev. B 25, 3457-3461 (1982).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A 5, S16-S50 (2003).
[CrossRef]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, (2003).

Ward, L.

D. N. Jarrett, and L. Ward, "Optical-Properties of Discontinuous Gold-Films," J. Phys. D Appl. Phys. 9, 1515-1527 (1976).
[CrossRef]

Yariv, A.

A. Yariv, "Coupled-Mode Theory for Guided-Wave Optics," IEEE J. Quantum Elect. QE 9, 919-933 (1973).

Zayats, A. V.

A. V. Zayats, and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A 5, S16-S50 (2003).
[CrossRef]

IEEE J. Quantum Elect. QE (1)

A. Yariv, "Coupled-Mode Theory for Guided-Wave Optics," IEEE J. Quantum Elect. QE 9, 919-933 (1973).

J. Lightwave Technol. (1)

F. Ladouceur, "Roughness, inhomogeneity, and integrated optics," J. Lightwave Technol. 15, 1020-1025 (1997).
[CrossRef]

J. Opt. A (1)

A. V. Zayats, and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A 5, S16-S50 (2003).
[CrossRef]

J. Phys. D Appl. Phys. (1)

D. N. Jarrett, and L. Ward, "Optical-Properties of Discontinuous Gold-Films," J. Phys. D Appl. Phys. 9, 1515-1527 (1976).
[CrossRef]

J. Vac. Sci. Technol. B (1)

D. Porath, O. Millo, and J. I. Gersten, "Scanning tunneling microscopy studies and computer simulations of annealing of gold films," J. Vac. Sci. Technol. B 14, 30-37 (1996).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, "Optical Properties of Granular Silver and Gold Films," Phys. Rev. B 8, 3689 (1973).
[CrossRef]

A. Adams, J. Moreland, P. K. Hansma, and Z. Schlesinger, "Light-Emission from Surface-Plasmon and Waveguide Modes Excited by N-Atoms near a Silver Grating," Phys. Rev. B 25, 3457-3461 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, (2003).

Other (5)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).

R. G. Hunsperger, Integrated Optics: theory and technology (Springer-Verlag, Berlin, 1991).

C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, Hoboken, NJ, 2005).

M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). A schematic representation layer by layer of the metal-dielectric nanostructure fabricated. (b). Atomic force microscope image of the thermally annealed surface (380° C) of a gold film showing roughness of the order of 50 nm laterally.

Fig. 2.
Fig. 2.

(a). TE polarized and (b) TM polarized reflectivity spectra of the annealed gold metal film coated with a single mode (TE) waveguide. The annealing process of the samples show in this figure lasted 8 minutes at 400° C. Figures (c) and (d) are optical images of the surface when viewed under TE and TM polarized white light at an angle of 70° degrees.

Fig. 3.
Fig. 3.

Experimental set-up used during the optical characterization of the samples. Light from a light source S is focused by a lens L onto the sample surface. A polarizer P was inserted between the lens and the sample. The light was collected by an optical fiber OF and sent into the optical spectrum analyzer SA. The inset in the figure indicates how the angles were measured during the experiments.

Fig. 4.
Fig. 4.

(a). Experimental TE polarized reflectivity spectra of the bare annealed thin gold film. The inset shows the calculated reflectivity spectra of a gold surface. (b). Experimental TE polarized reflectivity spectra of an annealed thin gold film in contact with a single mode optical waveguide. The annealing process of these samples lasted 15 minutes at 380° C.

Fig. 5.
Fig. 5.

Calculated TE dispersion relations for a slab optical waveguide with thicknesses varying from 100 nm to 300 nm. Square points show the extracted dispersion relations obtained from the experimental reflectivity spectra of a nanostructured surface with a 150 nm thick waveguide, top curve, and with 200 nm thick waveguide, bottom curve. The dashed line shows the light line for air and a medium with a refractive index of 1.5.

Fig. 6.
Fig. 6.

(a). A schematic representation of the PSM generated by the collective oscillations of localized dipoles in the single metal nanostructures. (b) Description of the coupling mechanism between the waveguide mode and the PSM.

Fig. 7.
Fig. 7.

Comparison between dispersion relations data obtained from experimental reflectivity spectra (triangular dots) and calculations from coupled mode theory (square dots). The black dotted line represents the light line in air.

Tables (2)

Tables Icon

Table I. Values of the k-vectors for a 150 nm thick waveguide.

Tables Icon

Table II. Values of the k-vector for a 150 nm thick waveguide.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k inc + k ns = k wg
ε ( ω ) ε D ( ω ) ε ( ω ) + 2 ε D ( ω ) = ( 1 x ) ε M ( ω ) ε D ( ω ) ε M ( ω ) + 2 ε D ( ω )
d d z a 1 = i k wg ( ω ) a 1 + κ 12 ( ω ) a 2
d d z a 2 = i k PSM ( ω ) a 2 + κ 12 * ( ω ) a 1
k = k wg + k PSM 2 ± ( k wg k PSM 2 ) 2 κ 1 , 2 2

Metrics