Abstract

We introduce a novel method for high wavelength-resolution measurement of polarization-averaged group delay, polarization dependent loss and polarization mode dispersion of optical components using swept optical single sideband modulated signals. Measurements of a phase-shifted fiber Bragg grating, a chirped fiber Bragg grating and of the Brillouin spectra of a length of fiber are used in order to demonstrate the technique.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Román, M. Y. Frankel, and R. D. Esman, "Spectral characterization of fiber gratings with high resolution," Opt. Lett. 23, 939-941 (1998).
    [CrossRef]
  2. R. Hernández, A. Loayssa, and D. Benito, "Optical vector network analysis based on single-sideband modulation," Opt. Eng. 43, 2418-2421 (2004).
    [CrossRef]
  3. A. Loayssa, R. Hernández, D. Benito, and S. Galech, "Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation," Opt. Lett. 29, 638-640 (2004).
    [CrossRef] [PubMed]
  4. D. J. Krause, J.C. Cartledge, L. Jakober, and K. Roberts, "Measurement of passive optical components using a carrier and single sideband," in Proc. Optical Fiber Communications Conference, (OFC'2006) paper OFN5 (2006).
  5. T. Kawanishi, T. Sakamoto, M. Izutsu, D. Fonseca, A. Cartaxo, and P. Monteiro, "Fine transmittance/reflectivity measurement system using single-sideband frequency sweeper with ultra-wideband Hilbert transformer," in Proc. European Conference on Optical Communication (ECOC'2006) paper Mo.4.4.6 (2006).
  6. M. Sagues, G. Beloki, and A. Loayssa, "Broadband Swept Optical Single-sideband Modulation Generation for Spectral Characterization of Optical Components," in Proc. European Conference on Optical Communication (ECOC'2007) paper 6.6.6 (2007).
  7. T. Niemi, M. Uusimaa, and H. Ludvigsen, "Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 1334-1336 (2001).
    [CrossRef]
  8. G. D. VanWiggeren, A.R. Motamedi and D.M. Barley, "Single-Scan Interferometric Component Analyzer," IEEE Photon. Technol. Lett. 15, 263-265 (2003).
    [CrossRef]
  9. D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, "Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion," Appl. Opt. 44, 7282-7286 (2005).
    [CrossRef] [PubMed]
  10. B.L. Heffner, "Deterministic, analytically complete measurement of polarization dependent transmission through optical devices," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
    [CrossRef]
  11. B. L. Heffner, "Automated Measurement of Polarization Mode Dispersion using Jones Matrix Eigenanalysis," IEEE Photon. Technol. Lett. 4, 451-454 (1992).
    [CrossRef]
  12. R. M. Craig, "Accurate Spectral Characterization of Polarization-Dependent Loss," J. Lightwave Technol. 21, 432-437 (2003).
    [CrossRef]
  13. P. A. Williams, "Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm," Electron. Lett. 35, 1578-1579 (1999).
    [CrossRef]
  14. Y. Shi, L. Yan, and X. S. Yao, "Automatic Maximum-Minimum Search Method for Accurate PDL and DOP Characterization," J. Lightwave Technol. 24, 4006-4012 (2006).
    [CrossRef]
  15. O. H. Adamczyk, A. B. Sahin, Q. Yu, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Trans. Microw. Theory Technol. 49, 1962-1967 (2001).
    [CrossRef]
  16. M. Oskar van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
    [CrossRef]

2006 (1)

2005 (1)

2004 (2)

2003 (2)

G. D. VanWiggeren, A.R. Motamedi and D.M. Barley, "Single-Scan Interferometric Component Analyzer," IEEE Photon. Technol. Lett. 15, 263-265 (2003).
[CrossRef]

R. M. Craig, "Accurate Spectral Characterization of Polarization-Dependent Loss," J. Lightwave Technol. 21, 432-437 (2003).
[CrossRef]

2001 (2)

T. Niemi, M. Uusimaa, and H. Ludvigsen, "Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 1334-1336 (2001).
[CrossRef]

O. H. Adamczyk, A. B. Sahin, Q. Yu, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Trans. Microw. Theory Technol. 49, 1962-1967 (2001).
[CrossRef]

1999 (1)

P. A. Williams, "Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm," Electron. Lett. 35, 1578-1579 (1999).
[CrossRef]

1998 (1)

1994 (1)

M. Oskar van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

1992 (2)

B.L. Heffner, "Deterministic, analytically complete measurement of polarization dependent transmission through optical devices," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

B. L. Heffner, "Automated Measurement of Polarization Mode Dispersion using Jones Matrix Eigenanalysis," IEEE Photon. Technol. Lett. 4, 451-454 (1992).
[CrossRef]

Adamczyk, O. H.

O. H. Adamczyk, A. B. Sahin, Q. Yu, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Trans. Microw. Theory Technol. 49, 1962-1967 (2001).
[CrossRef]

Barley, D.M.

G. D. VanWiggeren, A.R. Motamedi and D.M. Barley, "Single-Scan Interferometric Component Analyzer," IEEE Photon. Technol. Lett. 15, 263-265 (2003).
[CrossRef]

Benito, D.

Boot, A. J.

M. Oskar van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Craig, R. M.

Esman, R. D.

Frankel, M. Y.

Froggatt, M. E.

Galech, S.

Gifford, D. K.

Heffner, B. L.

B. L. Heffner, "Automated Measurement of Polarization Mode Dispersion using Jones Matrix Eigenanalysis," IEEE Photon. Technol. Lett. 4, 451-454 (1992).
[CrossRef]

Heffner, B.L.

B.L. Heffner, "Deterministic, analytically complete measurement of polarization dependent transmission through optical devices," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

Hernández, R.

Lee, S.

O. H. Adamczyk, A. B. Sahin, Q. Yu, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Trans. Microw. Theory Technol. 49, 1962-1967 (2001).
[CrossRef]

Loayssa, A.

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, "Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 1334-1336 (2001).
[CrossRef]

Motamedi, A.R.

G. D. VanWiggeren, A.R. Motamedi and D.M. Barley, "Single-Scan Interferometric Component Analyzer," IEEE Photon. Technol. Lett. 15, 263-265 (2003).
[CrossRef]

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, "Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 1334-1336 (2001).
[CrossRef]

Oskar van Deventer, M.

M. Oskar van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Román, J. E.

Sahin, A. B.

O. H. Adamczyk, A. B. Sahin, Q. Yu, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Trans. Microw. Theory Technol. 49, 1962-1967 (2001).
[CrossRef]

Shi, Y.

Soller, B. J.

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, "Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 1334-1336 (2001).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, A.R. Motamedi and D.M. Barley, "Single-Scan Interferometric Component Analyzer," IEEE Photon. Technol. Lett. 15, 263-265 (2003).
[CrossRef]

Williams, P. A.

P. A. Williams, "Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm," Electron. Lett. 35, 1578-1579 (1999).
[CrossRef]

Willner, A. E.

O. H. Adamczyk, A. B. Sahin, Q. Yu, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Trans. Microw. Theory Technol. 49, 1962-1967 (2001).
[CrossRef]

Wolfe, M. S.

Yan, L.

Yao, X. S.

Yu, Q.

O. H. Adamczyk, A. B. Sahin, Q. Yu, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Trans. Microw. Theory Technol. 49, 1962-1967 (2001).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

P. A. Williams, "Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm," Electron. Lett. 35, 1578-1579 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. Niemi, M. Uusimaa, and H. Ludvigsen, "Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings," IEEE Photon. Technol. Lett. 13, 1334-1336 (2001).
[CrossRef]

G. D. VanWiggeren, A.R. Motamedi and D.M. Barley, "Single-Scan Interferometric Component Analyzer," IEEE Photon. Technol. Lett. 15, 263-265 (2003).
[CrossRef]

B.L. Heffner, "Deterministic, analytically complete measurement of polarization dependent transmission through optical devices," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

B. L. Heffner, "Automated Measurement of Polarization Mode Dispersion using Jones Matrix Eigenanalysis," IEEE Photon. Technol. Lett. 4, 451-454 (1992).
[CrossRef]

IEEE Trans. Microw. Theory Technol. (1)

O. H. Adamczyk, A. B. Sahin, Q. Yu, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Trans. Microw. Theory Technol. 49, 1962-1967 (2001).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Eng. (1)

R. Hernández, A. Loayssa, and D. Benito, "Optical vector network analysis based on single-sideband modulation," Opt. Eng. 43, 2418-2421 (2004).
[CrossRef]

Opt. Lett. (2)

Other (3)

D. J. Krause, J.C. Cartledge, L. Jakober, and K. Roberts, "Measurement of passive optical components using a carrier and single sideband," in Proc. Optical Fiber Communications Conference, (OFC'2006) paper OFN5 (2006).

T. Kawanishi, T. Sakamoto, M. Izutsu, D. Fonseca, A. Cartaxo, and P. Monteiro, "Fine transmittance/reflectivity measurement system using single-sideband frequency sweeper with ultra-wideband Hilbert transformer," in Proc. European Conference on Optical Communication (ECOC'2006) paper Mo.4.4.6 (2006).

M. Sagues, G. Beloki, and A. Loayssa, "Broadband Swept Optical Single-sideband Modulation Generation for Spectral Characterization of Optical Components," in Proc. European Conference on Optical Communication (ECOC'2007) paper 6.6.6 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

OSSB Measurement system setup.

Fig. 2.
Fig. 2.

Spectrum of the OSSB modulated signal at the modulator output for 9.5 GHz (black dotted line) and 18 GHz (red line) modulation frequency.

Fig. 3.
Fig. 3.

Measurement of PDL of a PS-FBG using the OSSB technique (red solid line) and modulation phase-shift method (symbols).

Fig. 4.
Fig. 4.

Measurement of DGD of a C-FBG using the OSSB technique (red solid line) and modulation phase-shift method (thin line with symbols).

Fig. 5.
Fig. 5.

Measurement of (a) PDL (maximum and minimum amplitude response are shown), (b) DGD and (c) PAGD of the Brillouin spectra of a length of dispersion compensating fiber. Measurements (red line) are compared to theoretical calculations (black symbols) obtained by applying Kramers-Kronig equations to the measured amplitude response.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E in ( t ) = A o c exp ( j 2 π v 0 t ) + A S B exp [ j 2 π ( v 0 + f R F ) t ]
i out ( t ) f = f R F A O C A S B H ( v 0 ) H ( v 0 + f R F ) ×
× cos [ 2 π f R F t + A r g A S B A r g A O C + A r g H ( v 0 + f R F ) A r g H ( v 0 ) ]
I ( f R F ) = H * ( v 0 ) · H ( v 0 + f R F )
E i n = ( A O C · E s · e j · δ s O C + A S B · E s · e j · δ s S B · e j · 2 π · f R F · t A O C · E p · e j · δ p O C + A S B · E p · e j · δ p S B · e j · 2 π · f R F · t ) · e j · 2 π · v 0 · t
E s = H s · H D U T · E i n
E p = H p · H D U T · E i n
I s ( f R F ) A O C · A S B · [ H 11 * ( v 0 ) · H 11 ( v 0 + f R F ) · E s 2 · e j ( δ s S B δ s O C ) +
H 11 * ( v 0 ) · H 12 ( v 0 + f R F ) · E s · E p · e j ( δ p S B δ s O C ) +
H 12 * ( v 0 ) · H 11 ( v 0 + f R F ) · E s · E p · e j ( δ s S B δ p O C ) +
H 12 * ( v 0 ) · H 12 ( v 0 + f R F ) · E p 2 · e j ( δ p S B δ p O C ) ] · e j 2 π · τ s · f R F
I p ( f R F ) A O C · A S B · [ H 21 * ( v 0 ) · H 21 ( v 0 + f R F ) · E s 2 · e j ( δ s S B δ s O C ) +
H 21 * ( v 0 ) · H 22 ( v 0 + f R F ) · E s · E p · e j ( δ p S B δ s O C ) +
H 22 * ( v 0 ) · H 21 ( v 0 + f R F ) · E s · E p · e j ( δ s S B δ p O C ) +
H 22 * ( v 0 ) · H 22 ( v 0 + f R F ) · E p 2 · e j ( δ p S B δ p OC ) ] · e j 2 π · τ p · f R F
I s L H ( f R F ) = H 11 * ( v 0 ) · H 11 ( v 0 + f R F )
I s LV ( f R F ) = H 12 * ( v 0 ) · H 12 ( v 0 + f R F )
I p L H ( f R F ) = H 21 * ( v 0 ) · H 21 ( v 0 + f R F )
I p LV ( f R F ) = H 22 * ( v 0 ) · H 22 ( v 0 + f R F )
P A G D ( v ) = A r g { Σ H i j ( v ) · H i j * ( v Δ v ) } 2 π Δ v = A r g { 1 C 2 · Σ H i j ( v ) · H i j * ( v Δ v ) } 2 π Δ v
T max and T min = 1 C 2 . Eigenvalues [ H ( v ) * T · H ( v ) ]
D G D ( v ) = A r g ( ρ 1 ( v ) ρ 2 ( v ) ) 2 π · Δ v

Metrics