Abstract

We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Γ-Z stopband under liquid emersion.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  2. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
    [CrossRef] [PubMed]
  3. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
    [CrossRef] [PubMed]
  4. V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Express 29, 2061-2063 (2004).
  5. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
    [CrossRef] [PubMed]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  7. S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
    [CrossRef] [PubMed]
  8. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
    [CrossRef]
  9. D. Chanda, L. Abolghasemi, and P. R. Herman, "One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates," Opt. Express 14, 8568-8577 (2006).
    [CrossRef] [PubMed]
  10. D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett. 91, 061122, (2007).
    [CrossRef]
  11. N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
  12. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
  13. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).
  14. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
    [CrossRef]
  15. D. Chanda, L. Abolghasemi, and P. R. Herman, "Diffractive Optical Elements based Fabrication of Photonic Crystals," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMV7.
  16. D. Chanda, L. E. Abolghasemi, and P. R. Herman, "Single laser exposure fabrication of diamond-like 3-dimensional photonic crystal microstructure using circularly polarized light," Appl. Phys. A 93, 33-37 (2008).
    [CrossRef]
  17. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
    [CrossRef]
  18. J. H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
    [CrossRef]
  19. Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, "Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal," Opt. Express 16, 9165-9172 (2008).
    [CrossRef] [PubMed]
  20. T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73,046610 (2006).
    [CrossRef]
  21. J. T. Winthrop and Worthing.Cr,  "Theory of Fresnel images. I. plane periodis objects in monochromatic light," J. Opt. Soc. Am. 55, 373-381 (1965).
    [CrossRef]
  22. E. Noponen and J. Turunen, "Electromagnetic theory of Talbot imaging," Opt. Commun. 98, 132-140 (1993).
    [CrossRef]
  23. P. Szwaykowski and V. Arrizon, "Talbot array illuminator with multilevel phase gratings," Appl. Opt. 32, 1109-1114 (1993).
    [CrossRef] [PubMed]
  24. V. Arrizon and J. Ojedacastaneda, "Multilevel phase gratings for array illuminators," Appl. Opt. 33, 5925-5931 (1994).
    [CrossRef] [PubMed]
  25. L. E. Abolghasemi, D. Chanda, and P. R. Herman, "Modeling resist response in holographic formation of three-dimension photonic crystal templates," Proc. SPIE 6343, 63432Y.1-63432Y.8 (2006).
  26. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
    [CrossRef]
  27. D. Chanda, L. Abolghasemi, and P. R. Herman, "Numerical Band Calculation of Holographically Formed Periodic Structures with Irregular Motif," Proc. SPIE 6128,311-316 (2006).
  28. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photon. 2, 52-56 (2008).
    [CrossRef]
  29. C. H. Sun, and P. Jiang, "Acclaimed defects," Nat. Photon. 2, 9-11 (2008).
    [CrossRef]
  30. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
    [CrossRef] [PubMed]

2008 (4)

D. Chanda, L. E. Abolghasemi, and P. R. Herman, "Single laser exposure fabrication of diamond-like 3-dimensional photonic crystal microstructure using circularly polarized light," Appl. Phys. A 93, 33-37 (2008).
[CrossRef]

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photon. 2, 52-56 (2008).
[CrossRef]

C. H. Sun, and P. Jiang, "Acclaimed defects," Nat. Photon. 2, 9-11 (2008).
[CrossRef]

Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, "Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal," Opt. Express 16, 9165-9172 (2008).
[CrossRef] [PubMed]

2007 (3)

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett. 91, 061122, (2007).
[CrossRef]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).

2006 (6)

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73,046610 (2006).
[CrossRef]

D. Chanda, L. Abolghasemi, and P. R. Herman, "Numerical Band Calculation of Holographically Formed Periodic Structures with Irregular Motif," Proc. SPIE 6128,311-316 (2006).

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
[CrossRef] [PubMed]

D. Chanda, L. Abolghasemi, and P. R. Herman, "One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates," Opt. Express 14, 8568-8577 (2006).
[CrossRef] [PubMed]

2005 (1)

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

2004 (3)

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Express 29, 2061-2063 (2004).

2003 (1)

J. H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
[CrossRef]

2001 (1)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

2000 (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

1994 (2)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

V. Arrizon and J. Ojedacastaneda, "Multilevel phase gratings for array illuminators," Appl. Opt. 33, 5925-5931 (1994).
[CrossRef] [PubMed]

1993 (2)

P. Szwaykowski and V. Arrizon, "Talbot array illuminator with multilevel phase gratings," Appl. Opt. 32, 1109-1114 (1993).
[CrossRef] [PubMed]

E. Noponen and J. Turunen, "Electromagnetic theory of Talbot imaging," Opt. Commun. 98, 132-140 (1993).
[CrossRef]

1965 (1)

Abolghasemi, L.

D. Chanda, L. Abolghasemi, and P. R. Herman, "One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates," Opt. Express 14, 8568-8577 (2006).
[CrossRef] [PubMed]

D. Chanda, L. Abolghasemi, and P. R. Herman, "Numerical Band Calculation of Holographically Formed Periodic Structures with Irregular Motif," Proc. SPIE 6128,311-316 (2006).

Abolghasemi, L. E.

D. Chanda, L. E. Abolghasemi, and P. R. Herman, "Single laser exposure fabrication of diamond-like 3-dimensional photonic crystal microstructure using circularly polarized light," Appl. Phys. A 93, 33-37 (2008).
[CrossRef]

Arrizon, V.

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Braun, P. V.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photon. 2, 52-56 (2008).
[CrossRef]

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Busch, K.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Chan, T. Y. M.

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73,046610 (2006).
[CrossRef]

Chanda, D.

D. Chanda, L. E. Abolghasemi, and P. R. Herman, "Single laser exposure fabrication of diamond-like 3-dimensional photonic crystal microstructure using circularly polarized light," Appl. Phys. A 93, 33-37 (2008).
[CrossRef]

D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett. 91, 061122, (2007).
[CrossRef]

D. Chanda, L. Abolghasemi, and P. R. Herman, "Numerical Band Calculation of Holographically Formed Periodic Structures with Irregular Motif," Proc. SPIE 6128,311-316 (2006).

D. Chanda, L. Abolghasemi, and P. R. Herman, "One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates," Opt. Express 14, 8568-8577 (2006).
[CrossRef] [PubMed]

Chen, K. P.

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Cirelli, R.

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Darmawikarta, K.

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

Denning, R. G.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Deubel, M.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Garcia-Santamaria, F.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photon. 2, 52-56 (2008).
[CrossRef]

Gorishnyy, T.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Graugnard, E.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

Harb, A.

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Heitzman, C. E.

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Herman, P. R.

D. Chanda, L. E. Abolghasemi, and P. R. Herman, "Single laser exposure fabrication of diamond-like 3-dimensional photonic crystal microstructure using circularly polarized light," Appl. Phys. A 93, 33-37 (2008).
[CrossRef]

D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett. 91, 061122, (2007).
[CrossRef]

D. Chanda, L. Abolghasemi, and P. R. Herman, "Numerical Band Calculation of Holographically Formed Periodic Structures with Irregular Motif," Proc. SPIE 6128,311-316 (2006).

D. Chanda, L. Abolghasemi, and P. R. Herman, "One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates," Opt. Express 14, 8568-8577 (2006).
[CrossRef] [PubMed]

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

Hermatschweiler, M.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Jang, J. H.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

Jeon, S.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
[CrossRef] [PubMed]

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Jiang, P.

C. H. Sun, and P. Jiang, "Acclaimed defects," Nat. Photon. 2, 9-11 (2008).
[CrossRef]

John, S.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73,046610 (2006).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Juodkazis, S.

V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Express 29, 2061-2063 (2004).

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Kenis, P. J. A.

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

King, J. S.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

Klein-Wiele, J. H.

J. H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
[CrossRef]

Koh, C. Y.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Kooi, S.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Lin, Y.

Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, "Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal," Opt. Express 16, 9165-9172 (2008).
[CrossRef] [PubMed]

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

Linden, S.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Lozano, K.

Maldovan, M.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

Malyarchuk, V.

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Mingaleev, S. F.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).

Misawa, H.

V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Express 29, 2061-2063 (2004).

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Mizeikis, V.

V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Express 29, 2061-2063 (2004).

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Noponen, E.

E. Noponen and J. Turunen, "Electromagnetic theory of Talbot imaging," Opt. Commun. 98, 132-140 (1993).
[CrossRef]

Ojedacastaneda, J.

Ozin, G. A.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Park, J. U.

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Pereira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

Perez-Willard, F.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

Rinne, S. A.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photon. 2, 52-56 (2008).
[CrossRef]

Roche, O. M.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

Rodriguez, D.

Rogers, J. A.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
[CrossRef] [PubMed]

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Scrimgeour, J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

Seet, K.

V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Express 29, 2061-2063 (2004).

Sharp, D. N.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Simon, P.

J. H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Summers, C. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

Sun, C. H.

C. H. Sun, and P. Jiang, "Acclaimed defects," Nat. Photon. 2, 9-11 (2008).
[CrossRef]

Szwaykowski, P.

Tetreault, N.

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

Thomas, E. L.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

Tkeshelashvili, L.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).

Toader, O.

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73,046610 (2006).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Turberfield, A. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Turunen, J.

E. Noponen and J. Turunen, "Electromagnetic theory of Talbot imaging," Opt. Commun. 98, 132-140 (1993).
[CrossRef]

Ullal, C. K.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

von Freymann, G.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

Wegener, M.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

Wiederrecht, G. P.

Winthrop, J. T.

Worthing, J. T.

Xu, D.

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Yang, S.

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Adv. Funct. Mater. (1)

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007).
[CrossRef]

Adv. Mater. (2)

N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).

Appl. Opt. (2)

Appl. Phys. A (1)

D. Chanda, L. E. Abolghasemi, and P. R. Herman, "Single laser exposure fabrication of diamond-like 3-dimensional photonic crystal microstructure using circularly polarized light," Appl. Phys. A 93, 33-37 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

J. H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
[CrossRef]

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett. 91, 061122, (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photon. (2)

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photon. 2, 52-56 (2008).
[CrossRef]

C. H. Sun, and P. Jiang, "Acclaimed defects," Nat. Photon. 2, 9-11 (2008).
[CrossRef]

Nature (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Nature Materials (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Noponen and J. Turunen, "Electromagnetic theory of Talbot imaging," Opt. Commun. 98, 132-140 (1993).
[CrossRef]

Opt. Express (4)

Phys. Rep.-Rev. Sec. Phys. Lett. (1)

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).

Phys. Rev. E (1)

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73,046610 (2006).
[CrossRef]

Proc. Natl. Acad. Sci.USA (1)

S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. Chanda, L. Abolghasemi, and P. R. Herman, "Numerical Band Calculation of Holographically Formed Periodic Structures with Irregular Motif," Proc. SPIE 6128,311-316 (2006).

Science (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Other (2)

D. Chanda, L. Abolghasemi, and P. R. Herman, "Diffractive Optical Elements based Fabrication of Photonic Crystals," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMV7.

L. E. Abolghasemi, D. Chanda, and P. R. Herman, "Modeling resist response in holographic formation of three-dimension photonic crystal templates," Proc. SPIE 6343, 63432Y.1-63432Y.8 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The proposed single-surface three-level DOE (a) color-coded for each phase level as defined by orthogonal grooves of periodicities Λ x and Λ y, depths d 1 and d 2 and refractive indices n d1 and n d2 in a background medium of refractive index n b; and (b) laser exposure arrangement showing index matching medium (n i) between DOE substrate (n s) and photoresist (n r) layer which is spun onto a substrate of refractive index n s.

Fig. 2.
Fig. 2.

Diffraction efficiency of a three-level DOE (Fig. 1a) as a function of groove depth d 1 with a fixed groove difference (d 2 - d 1)=331 nm for diamond-like structure. Inset (i) shows the unit cell with d 2 and d 1 phase elements of refractive index, n d=1.6, in air background (n b=1.0) and substrate refractive index n s=146.

Fig. 3.
Fig. 3.

Near-field isointensity distribution computed by FDTD showing woodpile structure with clear offset S=c/4 between two orthogonally rotated logs as expected from the three-level DOE design of Λ=650 nm, d 1=1.13 µm, d 2=1.46 µm, n d=1.6 and n b=1.0. Inset (b) and (c) shows 2D intensity distribution (<I(x, y)>) of two planes separated axially by S=c/4=615 nm distance which show orthogonally rotated log-like intensity distributions as expected for a woodpile structure.

Fig. 4.
Fig. 4.

Atomic force microscope image of the three-level DOE represented by the three different colors (heights). Enlarged section indentifies a unit cell abcd (iii) and the ideal height profile ABCD (iv) used in the FDTD simulation. Inset (i) and (ii) show single-line height profiles in orthogonal scan directions that define groove depths d 2 and d 1 (Length of scale bars as indicated).

Fig. 5.
Fig. 5.

Top (a) and manually cleaved cross-sectional (b) SEM images of diamond-like woodpile structure in SU-8 photoresist showing 40 layers together with insets (i) and (iii), respectively, of predicted near-filed isointensity surfaces computed by FDTD. Inset (iv) shows enlarged view of cross-section of the actual structure and inset (ii) shows corresponding enlarged view of predicted isointensity surface of inset (iii).

Fig. 6.
Fig. 6.

Band diagram (a) of the structure shown in Fig. 5 revealing a Γ-Z direction (normal incidence) (c-axis) stopband between the 5th and 6th band and corresponding normalized transmission spectrum (b) measured as normal angle of incidence through the structure in Fig. 5b showing a strong (-30 dB) stopband at 1.306 µm.

Fig. 7.
Fig. 7.

Transmission recording of Γ-Z stopband during Ethanol emersion (t=0+) and evaporation (t>0+) and comparison with air-filled original photonic crystal spectrum (t=0-).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a = Λ ; c = Z T ( n r ) = ( λ d n r ) [ 1 1 λ d 2 ( n r Λ ) 2 ]
d 2 d 1 = Z T ( n b ) 4 = ( λ d n b ) 4 [ 1 1 λ d 2 ( n b Λ ) 2 ] ; S = c 4 = Z T ( n r ) 4

Metrics