Abstract

A universal post-compensation scheme for fiber impairments in wavelength-division multiplexing (WDM) systems is proposed based on coherent detection and digital signal processing (DSP). Transmission of 10×10 Gbit/s binary-phase-shift-keying (BPSK) signals at a channel spacing of 20 GHz over 800 km dispersion shifted fiber (DSF) has been demonstrated numerically.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar and W. A. Reed, "Dispersion-compensating single mode fiber: Efficient designs for first- and second-order compensation," Opt. Lett. 18, 924-926 (1993).
    [CrossRef] [PubMed]
  2. C. Kurtzke, "Suppression of fiber nonlinearities by appropriate dispersion management," IEEE Photon. Technol. Lett. 5, 1250-1253 (1993).
    [CrossRef]
  3. K. Nakajima, M. Ohashi, T. Horiguchi, K. Kurokawa, and Y. Miyajha, "Design of dispersion managed fiber and its FWM suppression performance," in Optical Fiber Communication Conference, Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper ThG3.
  4. X. Liu, X. Wei, R. E. Slusher, and C. J. Mckinstrie, "Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27, 1616-1618 (2002).
    [CrossRef]
  5. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," IEEE J. Lightwave Technol. 14, 243-248 (1996).
    [CrossRef]
  6. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
    [CrossRef]
  7. S. L. Woodward, S. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensation in a 100-km 10-Gb/s ring network," IEEE Photon. Technol. Lett. 15, 867-869 (2003).
    [CrossRef]
  8. K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
    [CrossRef]
  9. E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
    [CrossRef]
  10. M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments", IEEE Photon. Technol. Lett. 16, 674-676 (2004).
    [CrossRef]
  11. K. Kikuchi "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation", IEEE J. Sel. Topics Quantum Electron.,  12, 563-570 (2006).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  13. X. Li, X. Chen, and M. Qasmi, "A broad-band digital filtering approach for time-domain simulation of pulse propagation in optical fiber," IEEE J. Lightwave Technol. 23, 864-875 (2005).
    [CrossRef]
  14. R. Noé, "Phase noise tolerant synchronous QPSK receiver concept with digital I&Q baseband processing," in Proceedings of Opto-Electronics and Communications Conf. (2004), pp.818-819.
  15. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the step-size fourier method in modeling optical-fiber communications systems", IEEE J. Lightwave Technol. 21, 61-68 (2003).
    [CrossRef]
  16. H. Sari, G. Karam, and I. Jeanclaude, "Frequency domain equalization of mobile radio and terrestrial broadcast channels", in Proceedings of IEEE Global Telecomm. Conf., (IEEE,1994), pp.1-5.
  17. G. Goldfarb, G. Li, M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection", submitted to IEEE Photon. Technol. Lett. (2007).
    [CrossRef]

2007 (2)

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

G. Goldfarb, G. Li, M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection", submitted to IEEE Photon. Technol. Lett. (2007).
[CrossRef]

2006 (2)

K. Kikuchi "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation", IEEE J. Sel. Topics Quantum Electron.,  12, 563-570 (2006).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

2005 (2)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

X. Li, X. Chen, and M. Qasmi, "A broad-band digital filtering approach for time-domain simulation of pulse propagation in optical fiber," IEEE J. Lightwave Technol. 23, 864-875 (2005).
[CrossRef]

2004 (1)

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments", IEEE Photon. Technol. Lett. 16, 674-676 (2004).
[CrossRef]

2003 (2)

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the step-size fourier method in modeling optical-fiber communications systems", IEEE J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

S. L. Woodward, S. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensation in a 100-km 10-Gb/s ring network," IEEE Photon. Technol. Lett. 15, 867-869 (2003).
[CrossRef]

2002 (1)

1996 (1)

S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," IEEE J. Lightwave Technol. 14, 243-248 (1996).
[CrossRef]

1993 (2)

C. Kurtzke, "Suppression of fiber nonlinearities by appropriate dispersion management," IEEE Photon. Technol. Lett. 5, 1250-1253 (1993).
[CrossRef]

A. M. Vengsarkar and W. A. Reed, "Dispersion-compensating single mode fiber: Efficient designs for first- and second-order compensation," Opt. Lett. 18, 924-926 (1993).
[CrossRef] [PubMed]

Bayvel, P.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Boroditsky, M.

S. L. Woodward, S. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensation in a 100-km 10-Gb/s ring network," IEEE Photon. Technol. Lett. 15, 867-869 (2003).
[CrossRef]

Chen, X.

X. Li, X. Chen, and M. Qasmi, "A broad-band digital filtering approach for time-domain simulation of pulse propagation in optical fiber," IEEE J. Lightwave Technol. 23, 864-875 (2005).
[CrossRef]

Feuer, M.D.

S. L. Woodward, S. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensation in a 100-km 10-Gb/s ring network," IEEE Photon. Technol. Lett. 15, 867-869 (2003).
[CrossRef]

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Goldfarb, G.

G. Goldfarb, G. Li, M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection", submitted to IEEE Photon. Technol. Lett. (2007).
[CrossRef]

Hardcatle, I.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Holzlöhner, R.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the step-size fourier method in modeling optical-fiber communications systems", IEEE J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

Huang, S.

S. L. Woodward, S. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensation in a 100-km 10-Gb/s ring network," IEEE Photon. Technol. Lett. 15, 867-869 (2003).
[CrossRef]

Inuzuka, F.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Kikuchi, K.

K. Kikuchi "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation", IEEE J. Sel. Topics Quantum Electron.,  12, 563-570 (2006).
[CrossRef]

Killey, R. I.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Koga, M.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Kurtzke, C.

C. Kurtzke, "Suppression of fiber nonlinearities by appropriate dispersion management," IEEE Photon. Technol. Lett. 5, 1250-1253 (1993).
[CrossRef]

Li, C.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Li, G.

G. Goldfarb, G. Li, M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection", submitted to IEEE Photon. Technol. Lett. (2007).
[CrossRef]

Li, X.

X. Li, X. Chen, and M. Qasmi, "A broad-band digital filtering approach for time-domain simulation of pulse propagation in optical fiber," IEEE J. Lightwave Technol. 23, 864-875 (2005).
[CrossRef]

Liu, X.

Mckinstrie, C. J.

Menyuk, C. R.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the step-size fourier method in modeling optical-fiber communications systems", IEEE J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

O’Sullivan, M.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Qasmi, M.

X. Li, X. Chen, and M. Qasmi, "A broad-band digital filtering approach for time-domain simulation of pulse propagation in optical fiber," IEEE J. Lightwave Technol. 23, 864-875 (2005).
[CrossRef]

Reed, W. A.

Roberts, K.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Shirasaki, M.

S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," IEEE J. Lightwave Technol. 14, 243-248 (1996).
[CrossRef]

Sinkin, O. V.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the step-size fourier method in modeling optical-fiber communications systems", IEEE J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

Slusher, R. E.

Strawczynski, L.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

Takada, A.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Taylor, M. G.

G. Goldfarb, G. Li, M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection", submitted to IEEE Photon. Technol. Lett. (2007).
[CrossRef]

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments", IEEE Photon. Technol. Lett. 16, 674-676 (2004).
[CrossRef]

Vengsarkar, A. M.

Watanabe, S.

S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," IEEE J. Lightwave Technol. 14, 243-248 (1996).
[CrossRef]

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Wei, X.

Woodward, S. L.

S. L. Woodward, S. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensation in a 100-km 10-Gb/s ring network," IEEE Photon. Technol. Lett. 15, 867-869 (2003).
[CrossRef]

Yamazaki, E.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Yonenaga, K.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Zweck, J.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the step-size fourier method in modeling optical-fiber communications systems", IEEE J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

IEEE J. Lightwave Technol. (3)

S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," IEEE J. Lightwave Technol. 14, 243-248 (1996).
[CrossRef]

X. Li, X. Chen, and M. Qasmi, "A broad-band digital filtering approach for time-domain simulation of pulse propagation in optical fiber," IEEE J. Lightwave Technol. 23, 864-875 (2005).
[CrossRef]

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the step-size fourier method in modeling optical-fiber communications systems", IEEE J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

K. Kikuchi "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation", IEEE J. Sel. Topics Quantum Electron.,  12, 563-570 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

S. L. Woodward, S. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensation in a 100-km 10-Gb/s ring network," IEEE Photon. Technol. Lett. 15, 867-869 (2003).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
[CrossRef]

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments", IEEE Photon. Technol. Lett. 16, 674-676 (2004).
[CrossRef]

G. Goldfarb, G. Li, M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection", submitted to IEEE Photon. Technol. Lett. (2007).
[CrossRef]

C. Kurtzke, "Suppression of fiber nonlinearities by appropriate dispersion management," IEEE Photon. Technol. Lett. 5, 1250-1253 (1993).
[CrossRef]

Opt. Lett. (2)

Other (4)

K. Nakajima, M. Ohashi, T. Horiguchi, K. Kurokawa, and Y. Miyajha, "Design of dispersion managed fiber and its FWM suppression performance," in Optical Fiber Communication Conference, Vol. 3 of 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper ThG3.

H. Sari, G. Karam, and I. Jeanclaude, "Frequency domain equalization of mobile radio and terrestrial broadcast channels", in Proceedings of IEEE Global Telecomm. Conf., (IEEE,1994), pp.1-5.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

R. Noé, "Phase noise tolerant synchronous QPSK receiver concept with digital I&Q baseband processing," in Proceedings of Opto-Electronics and Communications Conf. (2004), pp.818-819.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

WDM system with fiber dispersion and nonlinearity compensation using coherent detection and DSP. Optical path: black line; Electrical path: blue line; OM: optical modulator; EDFA: Erbium-doped fiber amplifier.

Fig. 2.
Fig. 2.

Diagram of backward propagation for a multi-span fiber link. L: span number; N: step number per span.

Fig 3.
Fig 3.

Block diagram of parallel implementation for backward propagation using DSP technique. The hollow arrows represent multiple inputs or outputs and the solid arrows represent single input or output.

Fig 4.
Fig 4.

Block diagram of the sub-unit Mk in the kth branch in backward propagation. The inputs and outputs terminated by a circle may interface with other branches. The dashed lines only apply to some modules. p·T is the delay of FIR filter, and q·T is the delay of inverse nonlinear operator 1.

Fig. 5.
Fig. 5.

Eye diagrams of the 5th WDM channel: a) at back-to-back, b) after 500 km transmission over DSF without ENLC, c) after 500 km transmission over DSF with ENLC, d) after 800 km transmission over DSF with ENLC.

Fig. 6.
Fig. 6.

Calculated Q-factor of the 5th WDM channel vs. the average launching power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N ̂ 1 = A 2 , D ̂ 1 = i β 2 2 2 T 2 + β 3 6 3 T 3 α 2
r n = r ( t = n M · F s ) = i = 0 N c 1 s i , k ( n ) · e j · 2 · π · i N c 1 2 M
A ( z + h , T ) exp ( h 2 D ̂ 1 ) exp ( z z + h N ̂ 1 ( z ) dz ) exp ( h 2 D ̂ 1 ) A ( z , t )
z z + h N ̂ 1 ( z ) dz h 2 [ N ̂ 1 ( z ) + N ̂ 1 ( z + h ) ]

Metrics