Abstract

Coherent optical OFDM (CO-OFDM) has recently been proposed and the proof-of-concept transmission experiments have shown its extreme robustness against chromatic dispersion and polarization mode dispersion. In this paper, we first review the theoretical fundamentals for CO-OFDM and its channel model in a 2×2 MIMO-OFDM representation. We then present various design choices for CO-OFDM systems and perform the nonlinearity analysis for RF-to-optical up-converter. We also show the receiver-based digital signal processing to mitigate self-phase-modulation (SPM) and Gordon-Mollenauer phase noise, which is equivalent to the mid-span phase conjugation.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Orthogonal frequency division multiplexing for high-speed optical transmission

Ivan B. Djordjevic and Bane Vasic
Opt. Express 14(9) 3767-3775 (2006)

Decision-aided sampling frequency offset compensation for reduced-guard-interval coherent optical OFDM systems

Wei Wang, Qunbi Zhuge, Mohamed Morsy-Osman, Yuliang Gao, Xian Xu, Mathieu Chagnon, Meng Qiu, Minh Thang Hoang, Fangyuan Zhang, Rui Li, and David V. Plant
Opt. Express 22(22) 27553-27564 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
    [Crossref]
  2. S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Communications (Artech House, Boston, 2003).
  3. W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photon.Technol. Lett. 19, 134–136 (2007).
    [Crossref]
  4. W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43, 183–185 (2007).
    [Crossref]
  5. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka; “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest, (Anaheim, CA, USA, 2007), Paper PDP15.
    [PubMed]
  6. W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15, 9936–9947 (2007).
    [Crossref] [PubMed]
  7. A. J. Lowery and J. Armstrong, “10 Gb/s multimode fiber link using power-efficient orthogonal-frequency-division multiplexing,” Opt. Express 13, 10003–10009 (2005).
    [Crossref] [PubMed]
  8. J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
    [Crossref]
  9. J. M. Tang, J. M., P.M. Lane, and K. A. Shore, “30 Gb/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” Optical Fiber Commun. Conf., Anaheim, CA, paper JThB8 (2006).
  10. A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” Optical Fiber Commun. Conf., Anaheim, CA, paper PDP39 (2006).
  11. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14, 3767–3775 (2006).
    [Crossref] [PubMed]
  12. R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Sys. Tech. J. 45, 1775–1796 (1966).
  13. B. R. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. 15, 805–813 (1967).
    [Crossref]
  14. S. B. Weinsten and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete frouer transform,” IEEE Trans. Commun. 19, 628–634 (1971).
    [Crossref]
  15. L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANS and Broadcasting, (John Wiley & Sons, West Sussex, 2003).
  16. Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation for OFDM systems with rapid dispersive fading channels,” IEEE Trans. On Commun. 46, 902–915 (1998).
    [Crossref]
  17. Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19, 483–485 (2007).
    [Crossref]
  18. D. S. Ly-Gagnon, S. Tsukarnoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24, 12–21 (2006).
    [Crossref]
  19. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15, 2120–2126 (2007).
    [Crossref] [PubMed]
  20. X. Yi, W. Shieh, and Y. Ma, “Phase noise on coherent optical OFDM systems with 16-QAM and 64-QAM beyond 10 Gb/s,” European Conference on Optical Communications, paper 5.2.3, Berlin, Germany (2007).
  21. B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
    [Crossref]
  22. A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).
  23. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
    [Crossref]
  24. S. Wu and Y. Bar-Ness, “A phase noise suppression algorithm for OFDM-based WLANs,” IEEE Commun. Lett.6, pp. 535–537 (2002).
    [Crossref]
  25. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Optics Commun. 142, 119–125 (1997).
    [Crossref]
  26. L. Tomba, “The effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun. 46, 580–583 (1998).
    [Crossref]
  27. W. Shieh, “Maximum-Likelihood Phase Estimation for Coherent Optical OFDM,” European conference on optical communication, paper 4.2.5, Berlin, Germany (2007).
  28. X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19, pp. 919–921 (2007).
    [Crossref]
  29. Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Optics Express 13, 7527–7534 (2005).
    [Crossref] [PubMed]
  30. F. Auracher and R. Keil, “Method for measuring the RF modulation characteristics of Mach-Zehnder-type modulators,” Appl. Phys. Lett. 36, 626–629 (1980).
    [Crossref]
  31. B. H Kolner and D. W. Dolfi, “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Optics 26, 3676–3680 (1987).
    [Crossref]
  32. M. Mayrock and H. Haunstein, “Impact of Implementation Impairments on the Performance of an Optical OFDM Transmission System,” European Conference on Optical Communications, paper Th3.2.1, Cannes, France (2006).
  33. H. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Opt. Express 15, 4410–4418 (2007).
    [Crossref] [PubMed]
  34. K. Roberts, “Electronic Dispersion Compensation beyond 10 Gb/s” Technical Digest, LEOS Summer Topical Meeting, paper MA2.3 (2007).
    [Crossref]
  35. S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14, 243–248 (1996).
    [Crossref]
  36. S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
    [Crossref]
  37. G. P. Agrawal, Nonlinear Fiber Optics (Acadmic Press, San Diego, 1995).
  38. G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” European Conference on Optical Communications, paper Th.4.3.6, Cannes, France (2006).

2007 (7)

W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photon.Technol. Lett. 19, 134–136 (2007).
[Crossref]

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43, 183–185 (2007).
[Crossref]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15, 9936–9947 (2007).
[Crossref] [PubMed]

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19, 483–485 (2007).
[Crossref]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15, 2120–2126 (2007).
[Crossref] [PubMed]

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19, pp. 919–921 (2007).
[Crossref]

H. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Opt. Express 15, 4410–4418 (2007).
[Crossref] [PubMed]

2006 (4)

D. S. Ly-Gagnon, S. Tsukarnoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24, 12–21 (2006).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[Crossref]

I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14, 3767–3775 (2006).
[Crossref] [PubMed]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
[Crossref]

2005 (4)

A. J. Lowery and J. Armstrong, “10 Gb/s multimode fiber link using power-efficient orthogonal-frequency-division multiplexing,” Opt. Express 13, 10003–10009 (2005).
[Crossref] [PubMed]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
[Crossref]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Optics Express 13, 7527–7534 (2005).
[Crossref] [PubMed]

2004 (1)

B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
[Crossref]

1998 (2)

Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation for OFDM systems with rapid dispersive fading channels,” IEEE Trans. On Commun. 46, 902–915 (1998).
[Crossref]

L. Tomba, “The effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun. 46, 580–583 (1998).
[Crossref]

1997 (1)

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Optics Commun. 142, 119–125 (1997).
[Crossref]

1996 (1)

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14, 243–248 (1996).
[Crossref]

1987 (1)

B. H Kolner and D. W. Dolfi, “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Optics 26, 3676–3680 (1987).
[Crossref]

1980 (1)

F. Auracher and R. Keil, “Method for measuring the RF modulation characteristics of Mach-Zehnder-type modulators,” Appl. Phys. Lett. 36, 626–629 (1980).
[Crossref]

1971 (1)

S. B. Weinsten and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete frouer transform,” IEEE Trans. Commun. 19, 628–634 (1971).
[Crossref]

1967 (1)

B. R. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. 15, 805–813 (1967).
[Crossref]

1966 (1)

R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Sys. Tech. J. 45, 1775–1796 (1966).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Acadmic Press, San Diego, 1995).

Armstrong, J.

A. J. Lowery and J. Armstrong, “10 Gb/s multimode fiber link using power-efficient orthogonal-frequency-division multiplexing,” Opt. Express 13, 10003–10009 (2005).
[Crossref] [PubMed]

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” Optical Fiber Commun. Conf., Anaheim, CA, paper PDP39 (2006).

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
[Crossref]

Auracher, F.

F. Auracher and R. Keil, “Method for measuring the RF modulation characteristics of Mach-Zehnder-type modulators,” Appl. Phys. Lett. 36, 626–629 (1980).
[Crossref]

Bao, H.

Bar-Ness, Y.

S. Wu and Y. Bar-Ness, “A phase noise suppression algorithm for OFDM-based WLANs,” IEEE Commun. Lett.6, pp. 535–537 (2002).
[Crossref]

Bayvel, P.

Bigo, S.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” European Conference on Optical Communications, paper Th.4.3.6, Cannes, France (2006).

Chang, R. W.

R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Sys. Tech. J. 45, 1775–1796 (1966).

Charlet, G.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” European Conference on Optical Communications, paper Th.4.3.6, Cannes, France (2006).

Choi, B. J.

L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANS and Broadcasting, (John Wiley & Sons, West Sussex, 2003).

Cimini, L. J.

Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation for OFDM systems with rapid dispersive fading channels,” IEEE Trans. On Commun. 46, 902–915 (1998).
[Crossref]

de Waardt, H.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

Diddams, S.A.

B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
[Crossref]

Djordjevic, I. B.

Dolfi, D. W.

B. H Kolner and D. W. Dolfi, “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Optics 26, 3676–3680 (1987).
[Crossref]

Du, L.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” Optical Fiber Commun. Conf., Anaheim, CA, paper PDP39 (2006).

Ebert, P. M.

S. B. Weinsten and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete frouer transform,” IEEE Trans. Commun. 19, 628–634 (1971).
[Crossref]

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
[Crossref]

Evans, R.

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19, 483–485 (2007).
[Crossref]

Gavioli, G.

Gisin, N.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Optics Commun. 142, 119–125 (1997).
[Crossref]

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
[Crossref]

Hagimoto, K.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Han, Y.

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Optics Express 13, 7527–7534 (2005).
[Crossref] [PubMed]

Hanzo, L.

L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANS and Broadcasting, (John Wiley & Sons, West Sussex, 2003).

Hara, S.

S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Communications (Artech House, Boston, 2003).

Haunstein, H.

M. Mayrock and H. Haunstein, “Impact of Implementation Impairments on the Performance of an Optical OFDM Transmission System,” European Conference on Optical Communications, paper Th3.2.1, Cannes, France (2006).

Hibino, Y.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Huttner, B.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Optics Commun. 142, 119–125 (1997).
[Crossref]

Inuzuka, F.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

J. M.,

J. M. Tang, J. M., P.M. Lane, and K. A. Shore, “30 Gb/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” Optical Fiber Commun. Conf., Anaheim, CA, paper JThB8 (2006).

Jansen, S. L.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka; “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest, (Anaheim, CA, USA, 2007), Paper PDP15.
[PubMed]

Jorgensen, C.G.

B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
[Crossref]

Katoh, K.

Keil, R.

F. Auracher and R. Keil, “Method for measuring the RF modulation characteristics of Mach-Zehnder-type modulators,” Appl. Phys. Lett. 36, 626–629 (1980).
[Crossref]

Keller, T.

L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANS and Broadcasting, (John Wiley & Sons, West Sussex, 2003).

Khoe, G. D.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

Kikuchi, K.

Killey, R. I.

Kobayashi, T.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Kolner, B. H

B. H Kolner and D. W. Dolfi, “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Optics 26, 3676–3680 (1987).
[Crossref]

Krummrich, P.M.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

Lane, P. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[Crossref]

Lane, P.M.

J. M. Tang, J. M., P.M. Lane, and K. A. Shore, “30 Gb/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” Optical Fiber Commun. Conf., Anaheim, CA, paper JThB8 (2006).

Li, G.

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Optics Express 13, 7527–7534 (2005).
[Crossref] [PubMed]

Li, Y.

Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation for OFDM systems with rapid dispersive fading channels,” IEEE Trans. On Commun. 46, 902–915 (1998).
[Crossref]

Lowery, A. J.

A. J. Lowery and J. Armstrong, “10 Gb/s multimode fiber link using power-efficient orthogonal-frequency-division multiplexing,” Opt. Express 13, 10003–10009 (2005).
[Crossref] [PubMed]

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” Optical Fiber Commun. Conf., Anaheim, CA, paper PDP39 (2006).

Ly-Gagnon, D. S.

Ma, Y.

W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15, 9936–9947 (2007).
[Crossref] [PubMed]

X. Yi, W. Shieh, and Y. Ma, “Phase noise on coherent optical OFDM systems with 16-QAM and 64-QAM beyond 10 Gb/s,” European Conference on Optical Communications, paper 5.2.3, Berlin, Germany (2007).

Maaref, N.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” European Conference on Optical Communications, paper Th.4.3.6, Cannes, France (2006).

Mardoyan, H.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” European Conference on Optical Communications, paper Th.4.3.6, Cannes, France (2006).

Masuda, H.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Mayrock, M.

M. Mayrock and H. Haunstein, “Impact of Implementation Impairments on the Performance of an Optical OFDM Transmission System,” European Conference on Optical Communications, paper Th3.2.1, Cannes, France (2006).

Miyamoto, Y.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Monsalve, C. C.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

Morita, I.

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka; “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest, (Anaheim, CA, USA, 2007), Paper PDP15.
[PubMed]

Munster, M.

L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANS and Broadcasting, (John Wiley & Sons, West Sussex, 2003).

Newbury, N.R.

B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
[Crossref]

Nicholson, J.W.

B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
[Crossref]

Prasad, R.

S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Communications (Artech House, Boston, 2003).

Renaudier, J.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” European Conference on Optical Communications, paper Th.4.3.6, Cannes, France (2006).

Roberts, K.

K. Roberts, “Electronic Dispersion Compensation beyond 10 Gb/s” Technical Digest, LEOS Summer Topical Meeting, paper MA2.3 (2007).
[Crossref]

Sakamaki, Y.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Saltzberg, B. R.

B. R. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. 15, 805–813 (1967).
[Crossref]

Sano, A.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Savory, S. J.

Shieh, W.

H. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Opt. Express 15, 4410–4418 (2007).
[Crossref] [PubMed]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15, 9936–9947 (2007).
[Crossref] [PubMed]

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19, 483–485 (2007).
[Crossref]

W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photon.Technol. Lett. 19, 134–136 (2007).
[Crossref]

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43, 183–185 (2007).
[Crossref]

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19, pp. 919–921 (2007).
[Crossref]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
[Crossref]

X. Yi, W. Shieh, and Y. Ma, “Phase noise on coherent optical OFDM systems with 16-QAM and 64-QAM beyond 10 Gb/s,” European Conference on Optical Communications, paper 5.2.3, Berlin, Germany (2007).

W. Shieh, “Maximum-Likelihood Phase Estimation for Coherent Optical OFDM,” European conference on optical communication, paper 4.2.5, Berlin, Germany (2007).

Shirasaki, M.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14, 243–248 (1996).
[Crossref]

Shore, K. A.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[Crossref]

J. M. Tang, J. M., P.M. Lane, and K. A. Shore, “30 Gb/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” Optical Fiber Commun. Conf., Anaheim, CA, paper JThB8 (2006).

Sollenberger, N. R.

Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation for OFDM systems with rapid dispersive fading channels,” IEEE Trans. On Commun. 46, 902–915 (1998).
[Crossref]

Spalter, S.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

Takatori, Y.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Takeda, N.

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka; “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest, (Anaheim, CA, USA, 2007), Paper PDP15.
[PubMed]

Tanaka, H.

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka; “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest, (Anaheim, CA, USA, 2007), Paper PDP15.
[PubMed]

Tang, J. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[Crossref]

J. M. Tang, J. M., P.M. Lane, and K. A. Shore, “30 Gb/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” Optical Fiber Commun. Conf., Anaheim, CA, paper JThB8 (2006).

Tang, Y.

W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15, 9936–9947 (2007).
[Crossref] [PubMed]

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43, 183–185 (2007).
[Crossref]

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19, 483–485 (2007).
[Crossref]

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19, pp. 919–921 (2007).
[Crossref]

Tomba, L.

L. Tomba, “The effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun. 46, 580–583 (1998).
[Crossref]

Tran, P.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” European Conference on Optical Communications, paper Th.4.3.6, Cannes, France (2006).

Tsukarnoto, S.

van den Borne, D.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

Vasic, B.

Washburn, B.R.

B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
[Crossref]

Watanabe, S.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14, 243–248 (1996).
[Crossref]

Weinsten, S. B.

S. B. Weinsten and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete frouer transform,” IEEE Trans. Commun. 19, 628–634 (1971).
[Crossref]

Wu, S.

S. Wu and Y. Bar-Ness, “A phase noise suppression algorithm for OFDM-based WLANs,” IEEE Commun. Lett.6, pp. 535–537 (2002).
[Crossref]

Yamada, E.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Yamada, T.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Yan, M.F.

B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
[Crossref]

Yi, X.

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19, 483–485 (2007).
[Crossref]

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43, 183–185 (2007).
[Crossref]

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19, pp. 919–921 (2007).
[Crossref]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15, 9936–9947 (2007).
[Crossref] [PubMed]

X. Yi, W. Shieh, and Y. Ma, “Phase noise on coherent optical OFDM systems with 16-QAM and 64-QAM beyond 10 Gb/s,” European Conference on Optical Communications, paper 5.2.3, Berlin, Germany (2007).

Yoshida, E.

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

Appl. Optics (1)

B. H Kolner and D. W. Dolfi, “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Optics 26, 3676–3680 (1987).
[Crossref]

Appl. Phys. Lett. (1)

F. Auracher and R. Keil, “Method for measuring the RF modulation characteristics of Mach-Zehnder-type modulators,” Appl. Phys. Lett. 36, 626–629 (1980).
[Crossref]

Bell Sys. Tech. J. (1)

R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Sys. Tech. J. 45, 1775–1796 (1966).

Electron. Lett. (2)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
[Crossref]

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43, 183–185 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (5)

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[Crossref]

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19, 483–485 (2007).
[Crossref]

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19, pp. 919–921 (2007).
[Crossref]

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504–506 (2005).
[Crossref]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P.M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion,” IEEE Photon. Technol. Lett. 17, 923–925 (2005).
[Crossref]

IEEE Photon.Technol. Lett. (1)

W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photon.Technol. Lett. 19, 134–136 (2007).
[Crossref]

IEEE Trans. Commun. (3)

L. Tomba, “The effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun. 46, 580–583 (1998).
[Crossref]

B. R. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. 15, 805–813 (1967).
[Crossref]

S. B. Weinsten and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete frouer transform,” IEEE Trans. Commun. 19, 628–634 (1971).
[Crossref]

IEEE Trans. On Commun. (1)

Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation for OFDM systems with rapid dispersive fading channels,” IEEE Trans. On Commun. 46, 902–915 (1998).
[Crossref]

J. Lightwave Technol. (2)

D. S. Ly-Gagnon, S. Tsukarnoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24, 12–21 (2006).
[Crossref]

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14, 243–248 (1996).
[Crossref]

Opt. Express (5)

Optics Commun. (1)

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Optics Commun. 142, 119–125 (1997).
[Crossref]

Optics Express (1)

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Optics Express 13, 7527–7534 (2005).
[Crossref] [PubMed]

Optics Lett. (1)

B.R. Washburn, S.A. Diddams, N.R. Newbury, J.W. Nicholson, M.F. Yan, and C.G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Optics Lett. 29, pp. 250–252 (2004).
[Crossref]

Other (13)

A. Sano, E. Yoshida, H. Masuda, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” European Conference on Optical Communications, paper PD1.7, Berlin, Germany (2007).

S. Wu and Y. Bar-Ness, “A phase noise suppression algorithm for OFDM-based WLANs,” IEEE Commun. Lett.6, pp. 535–537 (2002).
[Crossref]

W. Shieh, “Maximum-Likelihood Phase Estimation for Coherent Optical OFDM,” European conference on optical communication, paper 4.2.5, Berlin, Germany (2007).

K. Roberts, “Electronic Dispersion Compensation beyond 10 Gb/s” Technical Digest, LEOS Summer Topical Meeting, paper MA2.3 (2007).
[Crossref]

M. Mayrock and H. Haunstein, “Impact of Implementation Impairments on the Performance of an Optical OFDM Transmission System,” European Conference on Optical Communications, paper Th3.2.1, Cannes, France (2006).

J. M. Tang, J. M., P.M. Lane, and K. A. Shore, “30 Gb/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” Optical Fiber Commun. Conf., Anaheim, CA, paper JThB8 (2006).

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” Optical Fiber Commun. Conf., Anaheim, CA, paper PDP39 (2006).

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka; “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest, (Anaheim, CA, USA, 2007), Paper PDP15.
[PubMed]

S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Communications (Artech House, Boston, 2003).

X. Yi, W. Shieh, and Y. Ma, “Phase noise on coherent optical OFDM systems with 16-QAM and 64-QAM beyond 10 Gb/s,” European Conference on Optical Communications, paper 5.2.3, Berlin, Germany (2007).

L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANS and Broadcasting, (John Wiley & Sons, West Sussex, 2003).

G. P. Agrawal, Nonlinear Fiber Optics (Acadmic Press, San Diego, 1995).

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” European Conference on Optical Communications, paper Th.4.3.6, Cannes, France (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Conceptual diagram for a generic multi-carrier modulation (MCM) system

Fig. 2.
Fig. 2.

Conceptual diagram for the OFDM transmitter and receiver

Fig. 3.
Fig. 3.

The OFDM signals (a) without cyclic prefix at the transmitter, (b) without cyclic prefix at the receiver, (c) with cyclic prefix at the transmitter, and (d) with cyclic prefix at the receiver.

Fig 4.
Fig 4.

The optical spectrum for (a) N wavelength-division-multiplexed COOFDM channels, (b) zoomed-in spectrum for one WDM channel, and (c) crosschannel OFDM (XC-OFDM) without guard band.

Fig. 5.
Fig. 5.

A complete CO-OFDM system including PMD, PDL and chromatic dispersion effects.

Fig. 6.
Fig. 6.

A CO-OFDM system in (a) direct up/down conversion architecture, and (b) intermediate frequency (IF) architecture.

Fig. 7.
Fig. 7.

The first-, second-, and third-order output powers as a function of modulation index M(dB)=20logM at the bias points of (a) π, and (b) π/2.

Fig. 8.
Fig. 8.

The transfer functions for the optical intensity and the optical field against the drive voltage.

Fig. 9.
Fig. 9.

A transmission system with mid-span phase conjugation

Fig. 10.
Fig. 10.

Abstraction of the split-step Fourier method for signal propagation in the fiber

Fig. 11.
Fig. 11.

(a). The Q factor as a function of the launch power with varying number of steps used in split-step Fourier method in nonlinear phase noise mitigation, and (b) the Q factor improvement as a result of nonlinear noise phase noise mitigation.

Fig. 12.
Fig. 12.

OSNR dynamic range as a function of number of steps.

Fig. 13.
Fig. 13.

The Q factor as the function of the nonlinear coefficient β for a step size of 4.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = i = + k = 1 N sc c ki s k ( t iT s )
S k ( t ) = ( t ) exp ( j 2 π f k t )
( t ) = { 1 , ( 0 < t T s ) 0 , ( t 0 , t > T s )
c ki = 0 T s r ( t i T s ) S * k dt = 0 T s r ( t i T s ) exp ( j 2 π f k t ) dt
δ kl = 1 T s 0 T s s k s * l dt = 1 T s 0 T s exp ( j 2 π ( f k f l ) t ) dt
= exp ( ( f k f l ) T s ) sin ( π ( f k f l ) T s ) π ( f k f l ) T s
f k f l = m 1 T s
t d < Δ G
R = N sc T s
B OFDM = 2 T s + Nsc 1 t s
η = 2 R B OFDM = 2 α , α = t s T s
r ( t ) = e j ϕ ( t ) s ( t ) h ( t ) + N ( t )
h ( t ) = h t ( t ) h l ( t ) h r ( t )
C k i = I i 0 · h ki · C ki + ε ki + n ki
ε ki = m = Nsc 2 , m k Nsc 2 1 C mi h mi I i ( m k )
I im = 1 N sc n = Nsc 2 Nsc 2 1 e j 2 π nm Nsc e j ϕ in
I i 0 = 1 N sc n = Nsc 2 Nsc 2 1 e j ϕ in 1 N sc e j ϕ i 0 n = Nsc 2 Nsc 2 1 ( 1 + j Δ ϕ in ) e j ϕ i
Δ ϕ in = ϕ in ϕ i 0 , ϕ i = 1 N sc n = Nsc 2 Nsc 2 1 ϕ in
h ki = h ki t · h ki l · h ki r
h ki l = e j Φ ki D p = 1 M exp { ( 1 2 j · β pi · f k + 1 2 α pi ) · σ }
Φ ki D = π · c · D t · f k 2 f LD 2
C ki = e i ϕ i h k C ki + ζ ki
E ( t ) = A · cos ( π 2 · V I + V DC V π ) · exp ( j ω LD 1 t + j ϕ LD 1 )
+ A · cos ( π 2 · V Q + V DC V π ) exp ( j ω L D 1 + π 2 + j ϕ L D 1 )
E ( t ) = exp ( j ω LD 1 t + j ϕ LD 1 ) · E B ( t )
E B ( t ) = cos [ M 2 ( cos ω 1 t + cos ω 2 t ) + ϕ 2 ] + j cos [ M 2 ( sin ω 1 t + sin ω 2 t ) + ϕ 2 ]
E ω 1 , 2 B ( t ) = 2 · sin ( ϕ 2 ) · J 0 ( M 2 ) · J 1 ( M 2 ) · e j ω 1 , 2 t
E ω 1 , 2 ω 2 , 1 B ( t ) = 2 · cos ( ϕ 2 ) · J 1 2 ( M 2 ) · e j ( ω 1 , 2 ω 2 , 1 ) t
E 2 ω 1 , 2 ω 2 , 1 B ( t ) = 2 · sin ( ϕ 2 ) · J 1 ( M 2 ) · J 2 ( M 2 ) · e j ( 2 ω 1 , 2 ω 2 , 1 ) t
IP 2 = 2 · sin 4 ( ϕ 2 ) cos 2 ( ϕ 2 )
IP 3 = 4 · sin 2 ( ϕ 2 )
M IP 2 = 2 · tan ( ϕ 2 )
M IP 3 = 4 2
r 0 ( t ) = ( i = 2 m exp ( N ̂ i ) exp ( D ̂ i ) ) exp ( N ̂ 1 ) r * ( t )
N ̂ i A ( t ) = j β A i ( t ) 2
D ̂ i A ( t ) = { F 1 exp ( j ϕ D ) F } A ( t )

Metrics