Abstract

The surface polariton properties of TM or TE plane wave scattered by a coated cylinder are investigated in this paper. The coated cylinder (whose outer radius is much smaller than the wavelength) is assumed to be electrically small and low dissipative. Analytical formulas of the plasmonic resonances are derived and found to agree well with those obtained from exact expressions in the classical scattering theory. The behaviors of the scattering coefficients at resonances are also discussed and compared for different cases. While a single cylinder has the resonance at the relative permittivity of εr=-1 (or relative permeability of μr=-1) for the TE (or TM) polarization, the resonances of the coated cylinders change with different n values (where n denotes the series term or mode of the field), and also the inner and outer radii. It is shown that the scattered field in the near zone can be enhanced significantly compared to the incident wave. For the TE incident case, we take a silver coated nano-cylinder as an example to illuminate the near-field optical effect. Also, we have studied the peak values of the nth order scattered field for different n values and electrical parameter k 0 b (where k 0 is the wavenumber of the free space and b denotes the outer radius of the cylinder) around the cylinder. The derived new formulas for total cross sections are given and they may provide us with some potential photonic applications such as surface cleaning and etching.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science,  292, 77-79 (2001).
    [CrossRef] [PubMed]
  3. N. Feth, C. Enkrich, M. Wegener, and S. Linden, "Large-area magnetic metamaterials via compact interference lithography," Opt. Express 15, 501-507 (2007).
    [CrossRef] [PubMed]
  4. C. Rockstuhl, F. Lederer, C. Etrich, Th. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14, 8827-8836 (2006).
    [CrossRef] [PubMed]
  5. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
    [CrossRef] [PubMed]
  6. Z. Ku and S. R. J. Brueck, "Comparison of negative refractive index materials with circular, elliptical and rectangular holes," Opt. Express 15, 4515-4522 (2007).
    [CrossRef] [PubMed]
  7. L. W. Li, W. Xu, H. Y. Yao, Z. N. Chen, and Q. Wu, "Design of left-handed metamaterials using single resonant and double resonant structures," Int’l J. Microwave Opt. Tech. 1, 10-16 (2006).
  8. C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction", Phys. Rev. B 75, 155120 (1-7) (2007).
    [CrossRef]
  9. C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings", Phys. Rev. B 75, 245214 (1-7) (2007).
    [CrossRef]
  10. Q. Cheng and T. J. Cui, "Negative refractions and backward waves in biaxially anisotropic chiral media," Opt. Express 14, 6322-6332 (2006).
    [CrossRef] [PubMed]
  11. A. Cho, "Voila! Cloak of invisibility unveiled," Science 314, 403 (2006).
    [CrossRef] [PubMed]
  12. Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133-11141 (2007).
    [CrossRef] [PubMed]
  13. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express,  15, 12717-12734 (2007).
    [CrossRef] [PubMed]
  14. H. Y. Yao, L. W. Li, C. W. Qiu, Q. Wu, and Z. N. Chen, "Properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials," Radio Sci. 42, 2006RS003509 (1-8) (2007).
    [CrossRef]
  15. S. Ancey, Y. Decanini, A. Folacci and P. Gabrielli, "Surface polaritons on left-handed cylinders: a complex angular momentum analysis," Phys. Rev. B 72, 085458 (1-18) (2005).
    [CrossRef]
  16. R. Ruppin, "Surface polaritons and extinction properties of a left-handed material cylinder," J. Phys.: Condens. Matter 16, 5991-5998 (2004).
    [CrossRef]
  17. M. A. Mushref, "Closed solution to electromagnetic scattering of a plane wave by an eccentric cylinder coated with metamaterials," Opt. Commun. 270, 441-446 (2007).
    [CrossRef]
  18. H. Vollmer and E. J. Rothwell,"Resonance series representation of the early-time field scattered by a coated cylinder," IEEE Trans. Antennas Propag. 52, 2186-2190 (2004).
    [CrossRef]
  19. B. S. Luk’yanchuk and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector field," Phys. Rev. B 73, 235432 (1-12) (2006).
    [CrossRef]
  20. S. Arslanagic, R. W. Ziolkowski, and O. Breinbjerg, "Excitation of an electrically small metamaterial-coated cylinder by an arbitrarily located line source," Microwave Opt. Tech. Lett. 48, 2598-2605 (2006).
    [CrossRef]
  21. C. C. H. Tang, "Backscattering from dielectric-coated infinite cylindrical obstacles," J. Appl. Phys. 28, 628-633 (1957).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  23. H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, "Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding," Opt. Express 15, 4216-4223 (2007).
    [CrossRef] [PubMed]
  24. U. Schroster and A. Dereux, "Surface plasmon polaritons on metal cylinders with dielectric core," Phys. Rev. B 64, 125420 (1-10) (2001).
    [CrossRef]

2007 (6)

2006 (5)

S. Arslanagic, R. W. Ziolkowski, and O. Breinbjerg, "Excitation of an electrically small metamaterial-coated cylinder by an arbitrarily located line source," Microwave Opt. Tech. Lett. 48, 2598-2605 (2006).
[CrossRef]

L. W. Li, W. Xu, H. Y. Yao, Z. N. Chen, and Q. Wu, "Design of left-handed metamaterials using single resonant and double resonant structures," Int’l J. Microwave Opt. Tech. 1, 10-16 (2006).

Q. Cheng and T. J. Cui, "Negative refractions and backward waves in biaxially anisotropic chiral media," Opt. Express 14, 6322-6332 (2006).
[CrossRef] [PubMed]

A. Cho, "Voila! Cloak of invisibility unveiled," Science 314, 403 (2006).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, Th. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14, 8827-8836 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

H. Vollmer and E. J. Rothwell,"Resonance series representation of the early-time field scattered by a coated cylinder," IEEE Trans. Antennas Propag. 52, 2186-2190 (2004).
[CrossRef]

R. Ruppin, "Surface polaritons and extinction properties of a left-handed material cylinder," J. Phys.: Condens. Matter 16, 5991-5998 (2004).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science,  292, 77-79 (2001).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

1957 (1)

C. C. H. Tang, "Backscattering from dielectric-coated infinite cylindrical obstacles," J. Appl. Phys. 28, 628-633 (1957).
[CrossRef]

Ancey, S.

S. Ancey, Y. Decanini, A. Folacci and P. Gabrielli, "Surface polaritons on left-handed cylinders: a complex angular momentum analysis," Phys. Rev. B 72, 085458 (1-18) (2005).
[CrossRef]

Arslanagic, S.

S. Arslanagic, R. W. Ziolkowski, and O. Breinbjerg, "Excitation of an electrically small metamaterial-coated cylinder by an arbitrarily located line source," Microwave Opt. Tech. Lett. 48, 2598-2605 (2006).
[CrossRef]

Breinbjerg, O.

S. Arslanagic, R. W. Ziolkowski, and O. Breinbjerg, "Excitation of an electrically small metamaterial-coated cylinder by an arbitrarily located line source," Microwave Opt. Tech. Lett. 48, 2598-2605 (2006).
[CrossRef]

Brueck, S. R. J.

Chen, Z. N.

L. W. Li, W. Xu, H. Y. Yao, Z. N. Chen, and Q. Wu, "Design of left-handed metamaterials using single resonant and double resonant structures," Int’l J. Microwave Opt. Tech. 1, 10-16 (2006).

H. Y. Yao, L. W. Li, C. W. Qiu, Q. Wu, and Z. N. Chen, "Properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials," Radio Sci. 42, 2006RS003509 (1-8) (2007).
[CrossRef]

Cheng, Q.

Cho, A.

A. Cho, "Voila! Cloak of invisibility unveiled," Science 314, 403 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Chu, H. S.

Cui, T. J.

Decanini, Y.

S. Ancey, Y. Decanini, A. Folacci and P. Gabrielli, "Surface polaritons on left-handed cylinders: a complex angular momentum analysis," Phys. Rev. B 72, 085458 (1-18) (2005).
[CrossRef]

Dereux, A.

U. Schroster and A. Dereux, "Surface plasmon polaritons on metal cylinders with dielectric core," Phys. Rev. B 64, 125420 (1-10) (2001).
[CrossRef]

Enkrich, C.

Etrich, C.

Ewe, W. B.

Fan, W.

Feng, Y.

Feth, N.

Folacci, A.

S. Ancey, Y. Decanini, A. Folacci and P. Gabrielli, "Surface polaritons on left-handed cylinders: a complex angular momentum analysis," Phys. Rev. B 72, 085458 (1-18) (2005).
[CrossRef]

Gabrielli, P.

S. Ancey, Y. Decanini, A. Folacci and P. Gabrielli, "Surface polaritons on left-handed cylinders: a complex angular momentum analysis," Phys. Rev. B 72, 085458 (1-18) (2005).
[CrossRef]

Giessen, H.

Greenleaf, A.

Huang, Y.

Jiang, T.

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Ku, Z.

Kuhl, J.

Kurylev, Y.

Lassas, M.

Lederer, F.

Li, E. P.

Li, L. W.

L. W. Li, W. Xu, H. Y. Yao, Z. N. Chen, and Q. Wu, "Design of left-handed metamaterials using single resonant and double resonant structures," Int’l J. Microwave Opt. Tech. 1, 10-16 (2006).

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction", Phys. Rev. B 75, 155120 (1-7) (2007).
[CrossRef]

H. Y. Yao, L. W. Li, C. W. Qiu, Q. Wu, and Z. N. Chen, "Properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials," Radio Sci. 42, 2006RS003509 (1-8) (2007).
[CrossRef]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings", Phys. Rev. B 75, 245214 (1-7) (2007).
[CrossRef]

Linden, S.

Luk’yanchuk, B. S.

B. S. Luk’yanchuk and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector field," Phys. Rev. B 73, 235432 (1-12) (2006).
[CrossRef]

Malloy, K. J.

Mushref, M. A.

M. A. Mushref, "Closed solution to electromagnetic scattering of a plane wave by an eccentric cylinder coated with metamaterials," Opt. Commun. 270, 441-446 (2007).
[CrossRef]

Osgood, R. M.

Panoiu, N. C.

Qiu, C. W.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction", Phys. Rev. B 75, 155120 (1-7) (2007).
[CrossRef]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings", Phys. Rev. B 75, 245214 (1-7) (2007).
[CrossRef]

H. Y. Yao, L. W. Li, C. W. Qiu, Q. Wu, and Z. N. Chen, "Properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials," Radio Sci. 42, 2006RS003509 (1-8) (2007).
[CrossRef]

Rockstuhl, C.

Rothwell, E. J.

H. Vollmer and E. J. Rothwell,"Resonance series representation of the early-time field scattered by a coated cylinder," IEEE Trans. Antennas Propag. 52, 2186-2190 (2004).
[CrossRef]

Ruppin, R.

R. Ruppin, "Surface polaritons and extinction properties of a left-handed material cylinder," J. Phys.: Condens. Matter 16, 5991-5998 (2004).
[CrossRef]

Schr¨oster, U.

U. Schroster and A. Dereux, "Surface plasmon polaritons on metal cylinders with dielectric core," Phys. Rev. B 64, 125420 (1-10) (2001).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science,  292, 77-79 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science,  292, 77-79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science,  292, 77-79 (2001).
[CrossRef] [PubMed]

Tang, C. C. H.

C. C. H. Tang, "Backscattering from dielectric-coated infinite cylindrical obstacles," J. Appl. Phys. 28, 628-633 (1957).
[CrossRef]

Ternovsky, V.

B. S. Luk’yanchuk and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector field," Phys. Rev. B 73, 235432 (1-12) (2006).
[CrossRef]

Uhlmann, G.

Vahldieck, R.

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vollmer, H.

H. Vollmer and E. J. Rothwell,"Resonance series representation of the early-time field scattered by a coated cylinder," IEEE Trans. Antennas Propag. 52, 2186-2190 (2004).
[CrossRef]

Wegener, M.

Wu, Q.

L. W. Li, W. Xu, H. Y. Yao, Z. N. Chen, and Q. Wu, "Design of left-handed metamaterials using single resonant and double resonant structures," Int’l J. Microwave Opt. Tech. 1, 10-16 (2006).

H. Y. Yao, L. W. Li, C. W. Qiu, Q. Wu, and Z. N. Chen, "Properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials," Radio Sci. 42, 2006RS003509 (1-8) (2007).
[CrossRef]

Xu, W.

L. W. Li, W. Xu, H. Y. Yao, Z. N. Chen, and Q. Wu, "Design of left-handed metamaterials using single resonant and double resonant structures," Int’l J. Microwave Opt. Tech. 1, 10-16 (2006).

Yao, H. Y.

L. W. Li, W. Xu, H. Y. Yao, Z. N. Chen, and Q. Wu, "Design of left-handed metamaterials using single resonant and double resonant structures," Int’l J. Microwave Opt. Tech. 1, 10-16 (2006).

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction", Phys. Rev. B 75, 155120 (1-7) (2007).
[CrossRef]

H. Y. Yao, L. W. Li, C. W. Qiu, Q. Wu, and Z. N. Chen, "Properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials," Radio Sci. 42, 2006RS003509 (1-8) (2007).
[CrossRef]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings", Phys. Rev. B 75, 245214 (1-7) (2007).
[CrossRef]

Yeo, T. S.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings", Phys. Rev. B 75, 245214 (1-7) (2007).
[CrossRef]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction", Phys. Rev. B 75, 155120 (1-7) (2007).
[CrossRef]

Zentgraf, Th.

Zhang, S.

Ziolkowski, R. W.

S. Arslanagic, R. W. Ziolkowski, and O. Breinbjerg, "Excitation of an electrically small metamaterial-coated cylinder by an arbitrarily located line source," Microwave Opt. Tech. Lett. 48, 2598-2605 (2006).
[CrossRef]

Zouhdi, S.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings", Phys. Rev. B 75, 245214 (1-7) (2007).
[CrossRef]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction", Phys. Rev. B 75, 155120 (1-7) (2007).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

H. Vollmer and E. J. Rothwell,"Resonance series representation of the early-time field scattered by a coated cylinder," IEEE Trans. Antennas Propag. 52, 2186-2190 (2004).
[CrossRef]

Int’l J. Microwave Opt. Tech. (1)

L. W. Li, W. Xu, H. Y. Yao, Z. N. Chen, and Q. Wu, "Design of left-handed metamaterials using single resonant and double resonant structures," Int’l J. Microwave Opt. Tech. 1, 10-16 (2006).

J. Appl. Phys. (1)

C. C. H. Tang, "Backscattering from dielectric-coated infinite cylindrical obstacles," J. Appl. Phys. 28, 628-633 (1957).
[CrossRef]

J. Phys.: Condens. Matter (1)

R. Ruppin, "Surface polaritons and extinction properties of a left-handed material cylinder," J. Phys.: Condens. Matter 16, 5991-5998 (2004).
[CrossRef]

Microwave Opt. Tech. Lett. (1)

S. Arslanagic, R. W. Ziolkowski, and O. Breinbjerg, "Excitation of an electrically small metamaterial-coated cylinder by an arbitrarily located line source," Microwave Opt. Tech. Lett. 48, 2598-2605 (2006).
[CrossRef]

Opt. Commun. (1)

M. A. Mushref, "Closed solution to electromagnetic scattering of a plane wave by an eccentric cylinder coated with metamaterials," Opt. Commun. 270, 441-446 (2007).
[CrossRef]

Opt. Express (8)

Q. Cheng and T. J. Cui, "Negative refractions and backward waves in biaxially anisotropic chiral media," Opt. Express 14, 6322-6332 (2006).
[CrossRef] [PubMed]

Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133-11141 (2007).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express,  15, 12717-12734 (2007).
[CrossRef] [PubMed]

N. Feth, C. Enkrich, M. Wegener, and S. Linden, "Large-area magnetic metamaterials via compact interference lithography," Opt. Express 15, 501-507 (2007).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, Th. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14, 8827-8836 (2006).
[CrossRef] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
[CrossRef] [PubMed]

Z. Ku and S. R. J. Brueck, "Comparison of negative refractive index materials with circular, elliptical and rectangular holes," Opt. Express 15, 4515-4522 (2007).
[CrossRef] [PubMed]

H. S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, "Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding," Opt. Express 15, 4216-4223 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science,  292, 77-79 (2001).
[CrossRef] [PubMed]

A. Cho, "Voila! Cloak of invisibility unveiled," Science 314, 403 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (6)

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction", Phys. Rev. B 75, 155120 (1-7) (2007).
[CrossRef]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings", Phys. Rev. B 75, 245214 (1-7) (2007).
[CrossRef]

H. Y. Yao, L. W. Li, C. W. Qiu, Q. Wu, and Z. N. Chen, "Properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials," Radio Sci. 42, 2006RS003509 (1-8) (2007).
[CrossRef]

S. Ancey, Y. Decanini, A. Folacci and P. Gabrielli, "Surface polaritons on left-handed cylinders: a complex angular momentum analysis," Phys. Rev. B 72, 085458 (1-18) (2005).
[CrossRef]

B. S. Luk’yanchuk and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector field," Phys. Rev. B 73, 235432 (1-12) (2006).
[CrossRef]

U. Schroster and A. Dereux, "Surface plasmon polaritons on metal cylinders with dielectric core," Phys. Rev. B 64, 125420 (1-10) (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Geometry for scattering of a plane wave by a coated cylinder.

Fig. 2.
Fig. 2.

Variation of the scattering coefficient An with various parameters.

Fig. 3.
Fig. 3.

The density plot of -ℜe(A 1) versus μ 2 and μ 3.

Fig. 4.
Fig. 4.

The energy distributions of the coated cylinder near resonances.

Fig. 5.
Fig. 5.

-ℜe(A 1) versus μ 2 for different parameters.

Fig. 6.
Fig. 6.

The density plot of -ℜe(A 1) versus μ 2 and μ 3 for the first resonance at q=0.1 and p=0.05.

Fig. 7.
Fig. 7.

The density plot of -ℜe(A 1) versus μ 2 and μ 3 for the first resonance at q=0.2 and p=0.05.

Fig. 8.
Fig. 8.

The energy distributions of the coated cylinder near the first resonance.

Fig. 9.
Fig. 9.

The energy distributions of the coated cylinder near the second resonance.

Fig. 10.
Fig. 10.

The energy intensity I′ distributions of a coated cylinder near resonance illuminated by TE plane wave.

Fig. 11.
Fig. 11.

Energy intensity of coated cylinder with or without damping term illuminated by TE plane wave.

Fig. 12.
Fig. 12.

Energy intensity of a silver coated nanocylinder.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E z inc = E 1 i = E 0 n = i n J n ( k 1 ρ ) e in θ .
E 1 sc = E 0 n = i n A n H n ( 1 ) ( k 1 ρ ) e in θ ;
E 2 = E 0 n = i n [ B n H n ( 2 ) ( k 2 ρ ) + C n H n ( 1 ) ( k 2 ρ ) ] e in θ ;
E 3 = E 0 n = i n D n J n ( k 3 ρ ) e in θ
H n ( 1 ) ( k 1 b ) A n H n ( 2 ) ( k 2 b ) B n H n ( 1 ) ( k 2 b ) C n = J n ( k 1 b ) ,
H n ( 2 ) ( k 2 a ) B n + H n ( 1 ) ( k 2 a ) C n J n ( k 3 a ) D n = 0 ,
k 1 µ 1 H n ( 1 ) ( k 1 b ) A n k 2 µ 2 H n ( 2 ) ( k 2 b ) B n k 2 µ 2 H n ( 1 ) ( k 2 b ) C n = k 1 µ 1 J n ( k 1 b ) ,
k 2 µ 2 H n ( 2 ) ( k 2 a ) B n k 2 µ 2 H n ( 1 ) ( k 2 a ) C n k 3 µ 3 J n ( k 3 a ) D n = 0 ,
A n = µ 2 µ 1 J n ( k 1 b ) [ H n ( 2 ) ( k 2 b ) P n + H n ( 1 ) ( k 2 b ) ] k 2 k 1 J n ( k 1 b ) [ H n ( 2 ) ( k 2 b ) P n + H n ( 1 ) ( k 2 b ) ] k 2 k 1 H n ( 1 ) ( k 1 b ) [ H n ( 2 ) ( k 2 b ) P n + H n ( 1 ) ( k 2 b ) ] µ 2 µ 1 H n ( 1 ) ( k 1 b ) [ H n ( 2 ) ( k 2 b ) P n + H n ( 1 ) ( k 2 b ) ]
P n = µ 3 µ 2 J n ( k 3 a ) H n ( 1 ) ( k 2 a ) k 3 k 2 J n ( k 3 a ) H n ( 1 ) ( k 2 a ) k 3 k 2 J n ( k 3 a ) H n ( 2 ) ( k 2 a ) µ 3 µ 2 J n ( k 3 a ) H n ( 2 ) ( k 2 a ) .
σ total = 4 k 1 n = A n 2 .
J n ( z ) ( 0.5 z ) n Γ ( n + 1 ) ,
H n ( 1 ) ( z ) ( 0.5 z ) n Γ ( n + 1 ) i Γ ( n ) π ( 2 z ) n ,
H n ( 2 ) ( z ) ( 0.5 z ) n Γ ( n + 1 ) + i Γ ( n ) π ( 2 z ) n ,
A n i π ( k 1 b 2 ) 2 n [ ( a b ) 2 n ( μ 1 + μ 2 ) ( μ 2 μ 3 ) + ( μ 1 μ 2 ) ( μ 2 + μ 3 ) ] Γ ( n ) Γ ( n + 1 ) [ ( a b ) 2 n ( μ 1 μ 2 ) ( μ 2 μ 3 ) + ( μ 1 + μ 2 ) ( μ 2 + μ 3 ) ] .
( a b ) 2 n ( μ 1 μ 2 ) ( μ 2 μ 3 ) + ( μ 1 + μ 2 ) ( μ 2 + μ 3 ) = 0 .
( a b ) 2 n ( ε 1 ε 2 ) ( ε 2 ε 3 ) + ( ε 1 + ε 2 ) ( ε 2 + ε 3 ) = 0 .
μ 2 = G ± H F
G = μ 1 + ( a b ) 2 n μ 1 + μ 3 + ( a b ) 2 n μ 3 ,
H = [ μ 1 + ( a b ) 2 n μ 1 + μ 3 + ( a b ) 2 n μ 3 ] 2 4 μ 1 μ 3 [ ( a b ) 2 n 1 ] 2 ,
F = 2 [ 1 ( a b ) 2 n ] .
μ 3 = μ 2 μ 1 + ( a b ) 2 n μ 1 + μ 2 ( a b ) 2 n μ 2 μ 1 ( a b ) 2 n μ 1 + μ 2 + ( a b ) 2 n μ 2
E 1 sc = E 0 i n H n ( 1 ) ( k 1 ρ ) e in θ .
I sn = 2 H n ( 1 ) ( k 1 ρ ) 2 .
σ total = 8 k 1 .

Metrics