Abstract

Highly stable operation of a two-stage multipass Ti:sapphire amplifier (a four-pass pre-amplifier and a four-pass power amplifier) for a 100-mJ-class chirped-pulse amplification system has been demonstrated by passive stabilization. By optimizing the ratio of pump energies to the two amplifiers and the optical losses artificially inserted into the second power amplifier, a root-mean-square fluctuation in pulse energy of 0.3% was achieved, which was 5 times lower than that of the pump laser. This is the lowest pulse-to-pulse fluctuation, to the best of our knowledge, obtained by the 100-mJ-class Ti:sapphire amplifiers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Mourou, T. Tajima, and S. V. Bulanov, "Optics in the relativistic regime," Rev. Mod. Phys. 78, 309-371 (2006).
    [CrossRef]
  2. C. Yamanaka and S. Sakabe, "Prospects of high power laser applications," Rev. Laser Eng. 30, 185-192 (2002).
    [CrossRef]
  3. H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
    [CrossRef]
  4. M. S. White, R. W. Wyatt, and A. G. Brett, "A self-setting attenuator for laser pulse energy stabilization," Opt. Comm. 44, 405-410 (1983).
    [CrossRef]
  5. T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, "Femtosecond laser pulse energy self-stabilization," Appl. Phys. B 79, 933-935 (2004).
    [CrossRef]
  6. A. Babushkin, W. Bittle, S. A. Letzring, A. Okishev, M. D. Skeldon, and W. Seka, "Stable, reproducible, and externally synchronizable regenerative amplifier for shaped optical pulses for the OMEGA laser system," in Advanced Solid-State Lasers, 1997 OSA Tech. Dig., Washington, DC, pp. 113-115.
  7. M. D. Skeldon, A. Babushkin, W. Bittle, A. V. Okishev, and W. Seka, "Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier," IEEE J. Quantum Electron. 34, 286-291 (1998).
    [CrossRef]
  8. F. P. Strolikendl, D. J. Files, and L. R. Dalton, "Highly stable amplification of femtosecond pulses," J. Opt. Soc. Am. B 11, 742-749 (1994).
    [CrossRef]
  9. L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
    [CrossRef]
  10. W. H. Lowdermilk and J. E. Murray, "The multipass amplifier: Theory and numerical analysis," J. Appl. Phys. 51, 2436-2444 (1980).
    [CrossRef]
  11. M. M. Tilleman and J. H. Jacob, "Short pulse amplification in the presence of absorption," Appl. Phys. Lett. 50, 121-123 (1987).
    [CrossRef]
  12. A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
    [CrossRef]

2006

G. A. Mourou, T. Tajima, and S. V. Bulanov, "Optics in the relativistic regime," Rev. Mod. Phys. 78, 309-371 (2006).
[CrossRef]

2005

A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
[CrossRef]

2004

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, "Femtosecond laser pulse energy self-stabilization," Appl. Phys. B 79, 933-935 (2004).
[CrossRef]

2002

C. Yamanaka and S. Sakabe, "Prospects of high power laser applications," Rev. Laser Eng. 30, 185-192 (2002).
[CrossRef]

1998

M. D. Skeldon, A. Babushkin, W. Bittle, A. V. Okishev, and W. Seka, "Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier," IEEE J. Quantum Electron. 34, 286-291 (1998).
[CrossRef]

1994

1987

M. M. Tilleman and J. H. Jacob, "Short pulse amplification in the presence of absorption," Appl. Phys. Lett. 50, 121-123 (1987).
[CrossRef]

1983

M. S. White, R. W. Wyatt, and A. G. Brett, "A self-setting attenuator for laser pulse energy stabilization," Opt. Comm. 44, 405-410 (1983).
[CrossRef]

1980

W. H. Lowdermilk and J. E. Murray, "The multipass amplifier: Theory and numerical analysis," J. Appl. Phys. 51, 2436-2444 (1980).
[CrossRef]

1963

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Babushkin, A.

M. D. Skeldon, A. Babushkin, W. Bittle, A. V. Okishev, and W. Seka, "Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier," IEEE J. Quantum Electron. 34, 286-291 (1998).
[CrossRef]

Bittle, W.

M. D. Skeldon, A. Babushkin, W. Bittle, A. V. Okishev, and W. Seka, "Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier," IEEE J. Quantum Electron. 34, 286-291 (1998).
[CrossRef]

Brett, A. G.

M. S. White, R. W. Wyatt, and A. G. Brett, "A self-setting attenuator for laser pulse energy stabilization," Opt. Comm. 44, 405-410 (1983).
[CrossRef]

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, "Optics in the relativistic regime," Rev. Mod. Phys. 78, 309-371 (2006).
[CrossRef]

Chen, S.-Y.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

Chien, T.-Y.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

Chu, H.-H.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

Dalton, L. R.

Files, D. J.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Gobert, O.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, "Femtosecond laser pulse energy self-stabilization," Appl. Phys. B 79, 933-935 (2004).
[CrossRef]

Gupta, P. D.

A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
[CrossRef]

Huang, S.-Y.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

Jacob, J. H.

M. M. Tilleman and J. H. Jacob, "Short pulse amplification in the presence of absorption," Appl. Phys. Lett. 50, 121-123 (1987).
[CrossRef]

Kaplan, D.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, "Femtosecond laser pulse energy self-stabilization," Appl. Phys. B 79, 933-935 (2004).
[CrossRef]

Kumbhare, S. R.

A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
[CrossRef]

Lee, C.-H.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

Legrand, F.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, "Femtosecond laser pulse energy self-stabilization," Appl. Phys. B 79, 933-935 (2004).
[CrossRef]

Lin, J.-Y.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk and J. E. Murray, "The multipass amplifier: Theory and numerical analysis," J. Appl. Phys. 51, 2436-2444 (1980).
[CrossRef]

Mishra, K. K.

A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
[CrossRef]

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, "Optics in the relativistic regime," Rev. Mod. Phys. 78, 309-371 (2006).
[CrossRef]

Murray, J. E.

W. H. Lowdermilk and J. E. Murray, "The multipass amplifier: Theory and numerical analysis," J. Appl. Phys. 51, 2436-2444 (1980).
[CrossRef]

Naik, P. A.

A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
[CrossRef]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Okishev, A. V.

M. D. Skeldon, A. Babushkin, W. Bittle, A. V. Okishev, and W. Seka, "Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier," IEEE J. Quantum Electron. 34, 286-291 (1998).
[CrossRef]

Oksenhendler, T.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, "Femtosecond laser pulse energy self-stabilization," Appl. Phys. B 79, 933-935 (2004).
[CrossRef]

Perdrix, M.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, "Femtosecond laser pulse energy self-stabilization," Appl. Phys. B 79, 933-935 (2004).
[CrossRef]

Raghuramaiah, M.

A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
[CrossRef]

Sakabe, S.

C. Yamanaka and S. Sakabe, "Prospects of high power laser applications," Rev. Laser Eng. 30, 185-192 (2002).
[CrossRef]

Seka, W.

M. D. Skeldon, A. Babushkin, W. Bittle, A. V. Okishev, and W. Seka, "Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier," IEEE J. Quantum Electron. 34, 286-291 (1998).
[CrossRef]

Sharma, A. K.

A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
[CrossRef]

Skeldon, M. D.

M. D. Skeldon, A. Babushkin, W. Bittle, A. V. Okishev, and W. Seka, "Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier," IEEE J. Quantum Electron. 34, 286-291 (1998).
[CrossRef]

Strolikendl, F. P.

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, "Optics in the relativistic regime," Rev. Mod. Phys. 78, 309-371 (2006).
[CrossRef]

Tilleman, M. M.

M. M. Tilleman and J. H. Jacob, "Short pulse amplification in the presence of absorption," Appl. Phys. Lett. 50, 121-123 (1987).
[CrossRef]

Wang, J.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

White, M. S.

M. S. White, R. W. Wyatt, and A. G. Brett, "A self-setting attenuator for laser pulse energy stabilization," Opt. Comm. 44, 405-410 (1983).
[CrossRef]

Wyatt, R. W.

M. S. White, R. W. Wyatt, and A. G. Brett, "A self-setting attenuator for laser pulse energy stabilization," Opt. Comm. 44, 405-410 (1983).
[CrossRef]

Xiao, Y.-F.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

Yamanaka, C.

C. Yamanaka and S. Sakabe, "Prospects of high power laser applications," Rev. Laser Eng. 30, 185-192 (2002).
[CrossRef]

Yang, L.-S.

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

Appl. Phys. B

H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S.-Y. Chen, and J. Wang, "A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality," Appl. Phys. B 79, 193-201 (2004).
[CrossRef]

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, "Femtosecond laser pulse energy self-stabilization," Appl. Phys. B 79, 933-935 (2004).
[CrossRef]

Appl. Phys. Lett.

M. M. Tilleman and J. H. Jacob, "Short pulse amplification in the presence of absorption," Appl. Phys. Lett. 50, 121-123 (1987).
[CrossRef]

IEEE J. Quantum Electron.

M. D. Skeldon, A. Babushkin, W. Bittle, A. V. Okishev, and W. Seka, "Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier," IEEE J. Quantum Electron. 34, 286-291 (1998).
[CrossRef]

J. Appl. Phys.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

W. H. Lowdermilk and J. E. Murray, "The multipass amplifier: Theory and numerical analysis," J. Appl. Phys. 51, 2436-2444 (1980).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Comm.

M. S. White, R. W. Wyatt, and A. G. Brett, "A self-setting attenuator for laser pulse energy stabilization," Opt. Comm. 44, 405-410 (1983).
[CrossRef]

Opt. Commun.

A. K. Sharma, M. Raghuramaiah, K. K. Mishra, P. A. Naik, S. R. Kumbhare, and P. D. Gupta, "Characteristics of a stable, injection Q-switched Nd:phosphate glass regenerative amplifier for a chirped pulse amplification based Table Top Terawatt laser system," Opt. Commun. 252, 369-380 (2005).
[CrossRef]

Rev. Laser Eng.

C. Yamanaka and S. Sakabe, "Prospects of high power laser applications," Rev. Laser Eng. 30, 185-192 (2002).
[CrossRef]

Rev. Mod. Phys.

G. A. Mourou, T. Tajima, and S. V. Bulanov, "Optics in the relativistic regime," Rev. Mod. Phys. 78, 309-371 (2006).
[CrossRef]

Other

A. Babushkin, W. Bittle, S. A. Letzring, A. Okishev, M. D. Skeldon, and W. Seka, "Stable, reproducible, and externally synchronizable regenerative amplifier for shaped optical pulses for the OMEGA laser system," in Advanced Solid-State Lasers, 1997 OSA Tech. Dig., Washington, DC, pp. 113-115.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). The output fluence J out (p) as a function of stored energy J sto (0) in 16-pass amplifier for different single-pass losses R. (b). The build-up traces of the amplified pulse fluence in the plateau range.

Fig. 2.
Fig. 2.

The stationary plateaus for 3- to 16-pass amplifiers with an input fluence J in (0) of (a) 10-7 and (b) 10-2 J/cm2.

Fig. 3.
Fig. 3.

The stationary plateaus for a two-stage multipass amplifier (a four-pass pre-amplifier and a four-pass power amplifier) pumped by a single pump source with the parameters of (a) the stored energy ratio A and (b) the coupling factor K.

Fig. 4.
Fig. 4.

Experimental setup.

Fig. 5.
Fig. 5.

(a). The average energy, the rms energy fluctuation, (b) the maximum energy, and the minimum energy of the power amplifier output as a function of average absorbed pump energy.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J out ( p ) = J sat In ( 1 + G 0 ( p ) { exp [ J in ( p ) / J sat ] 1 } ) ,
G 0 ( p ) = exp [ J sto ( p ) / J sat ] .
J in ( p + 1 ) = ( 1 R ) J out ( p ) ,
J sto ( p + 1 ) = J sto ( p ) [ J out ( p ) J in ( p ) ] .
J sto ( 0 , pre ) = A J sto ( 0 , pow ) .
J in ( 0 , pow ) = K J out ( P pre , pre ) ,

Metrics