Abstract

A wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser capable of operating at sweeping frequency in the order of a few kHz is designed and demonstrated by using a fiber Fabry-Perot tunable filter and a Sagnac loop incorporated with a 3.5-meter unpumped erbium-doped fiber. The laser operates in continuous-wave (CW) mode and can sweep approximately 45 nm over the entire C-band (1520nm-1570nm) window with linewidth less than 0.7 kHz. The optimum wavelength sweeping frequency in order to achieve the best output power stability was found to be ~20Hz with sweeping-induced power fluctuation of only 0.1%.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Kim, F. N. Farokhrooz, and J. U. Kang, "Electro-optic wavelength-tunable fiber ring laser based on cascaded composite Sagnac loop filters," Opt. Lett. 29, 1677-1679 (2004).
    [CrossRef] [PubMed]
  2. N. Libatique, L. Wang, and R. Jain, "Single-longitudinal-mode tunable WDM-channel-selectable fiber laser," Opt. Express 10, 1503-1507 (2002), http://www.opticsexpress.org/abstract.cfm?uri=OE-10-25-1503.
    [PubMed]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183.
    [CrossRef] [PubMed]
  4. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. and W. J. Feinberg, "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13, 1167-1169 (2001).
    [CrossRef]
  5. H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, "Widely tunable single-frequency Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 15, 185-187 (2003).
    [CrossRef]
  6. C. H. Yeh, T. T. Huang, H. C. Chien, C. H. Ko, and S. Chi, "Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation," Opt. Express 15, 382-386 (2007),http://www.opticsexpress.org/abstract.cfm?uri=oe-15-2-382.
    [CrossRef] [PubMed]
  7. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
    [CrossRef]
  8. B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, "Nonlinear wave mixing and induced gratings in erbium-doped fiber amplifiers," Opt. Lett. 18, 2108-2110 (1993).
    [CrossRef] [PubMed]
  9. S. J. Frisken, "Transient Bragg reflection gratings in erbium-doped fiber amplifiers," Opt. Lett. 17, 1776-1778 (1992).
    [CrossRef] [PubMed]
  10. J. Liu, J. P. Yao, J. Yao, and T. H Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
    [CrossRef]
  11. A. Yariv, Optical electronics in modern communications (Oxford University Press, 1997).
  12. S. Fleming and T. Whitley, "Measurement and analysis of pump dependent refractive index and dispersion effects in erbium-doped fiber amplifiers," IEEE J. Quantum Electron. 32, 1113-1121 (1996).
    [CrossRef]
  13. E. Desurvire, Erbium-doped fiber amplifiers: Principles and Applications (John Wiley& Sons, 1994).
  14. Q1. X. W. Shu, S. Jiang, and D. Huang, "Fiber Grating Sagnac Loop and Its Multiwavelength-Laser Application," IEEE Photon. Technol. Lett. 20, 980-982 (2000).
  15. A. Othonos and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and sensing (Artech House, 1999).
  16. R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, "Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber," Opt. Commun. 255, 65-71 (2005).
    [CrossRef]
  17. D. Chen, C. Shu, and S. He, "Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser," Opt. Lett. 33, 1395-1397 (2008).
    [CrossRef] [PubMed]
  18. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003),
    [CrossRef] [PubMed]

2008

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

D. Chen, C. Shu, and S. He, "Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser," Opt. Lett. 33, 1395-1397 (2008).
[CrossRef] [PubMed]

2007

2005

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, "Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber," Opt. Commun. 255, 65-71 (2005).
[CrossRef]

2004

J. Liu, J. P. Yao, J. Yao, and T. H Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

C. S. Kim, F. N. Farokhrooz, and J. U. Kang, "Electro-optic wavelength-tunable fiber ring laser based on cascaded composite Sagnac loop filters," Opt. Lett. 29, 1677-1679 (2004).
[CrossRef] [PubMed]

2003

2002

2001

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. and W. J. Feinberg, "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13, 1167-1169 (2001).
[CrossRef]

2000

Q1. X. W. Shu, S. Jiang, and D. Huang, "Fiber Grating Sagnac Loop and Its Multiwavelength-Laser Application," IEEE Photon. Technol. Lett. 20, 980-982 (2000).

1996

S. Fleming and T. Whitley, "Measurement and analysis of pump dependent refractive index and dispersion effects in erbium-doped fiber amplifiers," IEEE J. Quantum Electron. 32, 1113-1121 (1996).
[CrossRef]

1993

1992

Babin, F.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, "Widely tunable single-frequency Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 15, 185-187 (2003).
[CrossRef]

Bouma, B. E.

Chen, D.

Chen, H.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, "Widely tunable single-frequency Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 15, 185-187 (2003).
[CrossRef]

Cheng, X. P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

Chi, S.

Chien, H. C.

Choma, M.

de Boer, J. F.

DiGiovanni, D. J.

Farokhrooz, F. N.

Fischer, B.

Fleming, S.

S. Fleming and T. Whitley, "Measurement and analysis of pump dependent refractive index and dispersion effects in erbium-doped fiber amplifiers," IEEE J. Quantum Electron. 32, 1113-1121 (1996).
[CrossRef]

Frisken, S. J.

Havstad, S. A.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. and W. J. Feinberg, "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13, 1167-1169 (2001).
[CrossRef]

He, S.

Huang, D.

Q1. X. W. Shu, S. Jiang, and D. Huang, "Fiber Grating Sagnac Loop and Its Multiwavelength-Laser Application," IEEE Photon. Technol. Lett. 20, 980-982 (2000).

Huang, T. T.

Iftimia, N.

Izatt, J.

Jain, R.

Jiang, S.

Q1. X. W. Shu, S. Jiang, and D. Huang, "Fiber Grating Sagnac Loop and Its Multiwavelength-Laser Application," IEEE Photon. Technol. Lett. 20, 980-982 (2000).

Kang, J. U.

Kashyap, R.

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, "Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber," Opt. Commun. 255, 65-71 (2005).
[CrossRef]

Kiiveri, P.

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, "Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber," Opt. Commun. 255, 65-71 (2005).
[CrossRef]

Kim, C. S.

Ko, C. H.

Kostko, I. A.

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, "Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber," Opt. Commun. 255, 65-71 (2005).
[CrossRef]

Leblanc, M.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, "Widely tunable single-frequency Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 15, 185-187 (2003).
[CrossRef]

Libatique, N.

Liu, J.

J. Liu, J. P. Yao, J. Yao, and T. H Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Liu, R. N.

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, "Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber," Opt. Commun. 255, 65-71 (2005).
[CrossRef]

Sarunic, M.

Schinn, G. W.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, "Widely tunable single-frequency Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 15, 185-187 (2003).
[CrossRef]

Shu, C.

Shu, X. W.

Q1. X. W. Shu, S. Jiang, and D. Huang, "Fiber Grating Sagnac Loop and Its Multiwavelength-Laser Application," IEEE Photon. Technol. Lett. 20, 980-982 (2000).

Shum, P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

Song, Y. W.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. and W. J. Feinberg, "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13, 1167-1169 (2001).
[CrossRef]

Starodubov, D.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. and W. J. Feinberg, "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13, 1167-1169 (2001).
[CrossRef]

Sulhoff, J. W.

Tan, W. C.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

Tang, M.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

Tearney, G. J.

Tse, C. H.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

Wang, L.

Whitley, T.

S. Fleming and T. Whitley, "Measurement and analysis of pump dependent refractive index and dispersion effects in erbium-doped fiber amplifiers," IEEE J. Quantum Electron. 32, 1113-1121 (1996).
[CrossRef]

Wu, K.

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, "Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber," Opt. Commun. 255, 65-71 (2005).
[CrossRef]

Wu, R. F.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

Xie, Y.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. and W. J. Feinberg, "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13, 1167-1169 (2001).
[CrossRef]

Yang, C.

Yao, J.

J. Liu, J. P. Yao, J. Yao, and T. H Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Yao, J. P.

J. Liu, J. P. Yao, J. Yao, and T. H Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Yeap, T. H

J. Liu, J. P. Yao, J. Yao, and T. H Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Yeh, C. H.

Yun, S. H.

Zhang, J.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

Zhou, J. L.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

Zyskind, J. L.

IEEE J. Quantum Electron.

S. Fleming and T. Whitley, "Measurement and analysis of pump dependent refractive index and dispersion effects in erbium-doped fiber amplifiers," IEEE J. Quantum Electron. 32, 1113-1121 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

Q1. X. W. Shu, S. Jiang, and D. Huang, "Fiber Grating Sagnac Loop and Its Multiwavelength-Laser Application," IEEE Photon. Technol. Lett. 20, 980-982 (2000).

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. and W. J. Feinberg, "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13, 1167-1169 (2001).
[CrossRef]

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, "Widely tunable single-frequency Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 15, 185-187 (2003).
[CrossRef]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H Yeap, "Single-longitudinal-mode multiwavelength fiber ring laser," IEEE Photon. Technol. Lett. 16, 1020-1022 (2004).
[CrossRef]

Opt. Commun.

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, "Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber," Opt. Commun. 255, 65-71 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Othonos and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and sensing (Artech House, 1999).

E. Desurvire, Erbium-doped fiber amplifiers: Principles and Applications (John Wiley& Sons, 1994).

A. Yariv, Optical electronics in modern communications (Oxford University Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic layout of the tunable SLM EDF ring laser

Fig. 2.
Fig. 2.

(a) OSA measured output spectrum of the laser under the pump power of 100mW. (b) Measured output laser power as a function of the 980nm LD input pump power. (c) RF spectrum of delayed self-heterodyne signal

Fig. 3.
Fig. 3.

Noise spectrum of output laser (a) with 3.5-meter EDF and (b) with 0.3-meter EDF.

Fig. 4.
Fig. 4.

(a) Measured output spectrum at fixed wavelength of 1548.45nm every 3 minutes for 60 minutes. (b) Fluctuation of wavelength during 60 minutes.

Fig. 5.
Fig. 5.

(a)~(c) Output power intensity as function of wavelength at sweeping frequency of 0.2Hz, 20 Hz and 100Hz respectively. (d) RMS of output power as a function of sweeping frequency. (e) Noise spectrum of output laser at sweeping frequency of 20 Hz. (f) Peak-hold (persistence mode) spectrums of the lasing modes when triangle waveforms are applied to the FFP-TF, with frequencies of 2.0 kHz (solid line) and 3.0 kHz (dot line) respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α ( z ) = α 0 1 + I ( z ) I sat
Δ n ( z , ω ) = c π P . V . ω 1 ω 2 Δ α ( z , ω ) ( ω ) 2 ω 2 d ω
T = [ ( 1 2 K ) 1 δ 2 κ 2 + 2 K ( 1 K ) sinh ( κ 2 δ 2 L g ) cos ( β Δ L ) ] 2 cosh 2 ( κ 2 δ 2 L g ) δ 2 κ 2
T = sinh 2 ( κ 2 δ 2 L g ) cosh 2 ( κ 2 δ 2 L g ) δ 2 κ 2
Δ f = c λ κ ( Δ n 2 n eff ) 2 + ( 1 N ) 2
κ = 2 Δ n n eff λ

Metrics