Abstract

We proposed and demonstrate use of optical driving pulses at a telecommunication wavelength for exciton-based quantum gate operation. The exciton in a self-assembled quantum dot is coherently manipulated at 1.3 µm through Rabi oscillation. The telecom-band exciton-qubit system incorporates standard optical fibers and fiber optic devices. The coherent manipulation of the two-level system compatible with flexible and stable fiber network paves the way toward practical optical implementation of quantum information processing devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).
  2. D. P. DiVicenzo, "Quantum computation," Science 270, 255-261 (2000).
    [CrossRef]
  3. N. Gisin and R. Thew, "Quantum communication," Nature Photon. 1, 165-171 (2007).
    [CrossRef]
  4. H. Htoon et al., "Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots," Phys. Rev. Lett. 88, 087401 (2002).
    [CrossRef]
  5. T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
    [CrossRef] [PubMed]
  6. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
    [CrossRef] [PubMed]
  7. A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
    [CrossRef] [PubMed]
  8. R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).
  9. A. Zrenner, S. Stuffer, P. Ester, and M. Bichler, "Manipulations of a Qubit in a Semiconductor Quantum Dot," Adv. Solid State Phys. 45, 173-184 (2005).
    [CrossRef]
  10. S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).
  11. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
    [CrossRef] [PubMed]
  12. L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms (Wiley, New York, 1975).
  13. P. Borri, W. Langbein, S. Schneider, and U. Woggon, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef] [PubMed]
  14. J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 78, 3469-3471 (2001).
    [CrossRef]
  15. F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001).
    [CrossRef]
  16. R. Oulton, J. J. Finley, A. D. Ashmore, I. D. Gregory, I. D., Mowbray, M. S. Skolnick, M. J. Steer, M. A. San-Lin Liew, Migliorato, and A. J. Cullis, "Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot," Phys. Rev. B 66, 45313 (2002).
  17. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Sot. Am. B 5, 1563-1572 (1988).
    [CrossRef]
  18. Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).
  19. J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, "Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots," Phys. Rev Lett. 91, 127401 (2003).
    [CrossRef] [PubMed]
  20. J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, "Decoherence of Rabi oscillations in a single quantum dot," Phys. Rev. Lett. 94, 057404 (2005).
    [CrossRef] [PubMed]

2008

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

2007

N. Gisin and R. Thew, "Quantum communication," Nature Photon. 1, 165-171 (2007).
[CrossRef]

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

2006

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

2005

A. Zrenner, S. Stuffer, P. Ester, and M. Bichler, "Manipulations of a Qubit in a Semiconductor Quantum Dot," Adv. Solid State Phys. 45, 173-184 (2005).
[CrossRef]

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, "Decoherence of Rabi oscillations in a single quantum dot," Phys. Rev. Lett. 94, 057404 (2005).
[CrossRef] [PubMed]

2003

J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, "Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots," Phys. Rev Lett. 91, 127401 (2003).
[CrossRef] [PubMed]

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

2002

A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
[CrossRef] [PubMed]

H. Htoon et al., "Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots," Phys. Rev. Lett. 88, 087401 (2002).
[CrossRef]

R. Oulton, J. J. Finley, A. D. Ashmore, I. D. Gregory, I. D., Mowbray, M. S. Skolnick, M. J. Steer, M. A. San-Lin Liew, Migliorato, and A. J. Cullis, "Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot," Phys. Rev. B 66, 45313 (2002).

2001

P. Borri, W. Langbein, S. Schneider, and U. Woggon, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 78, 3469-3471 (2001).
[CrossRef]

F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001).
[CrossRef]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

2000

D. P. DiVicenzo, "Quantum computation," Science 270, 255-261 (2000).
[CrossRef]

1988

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Sot. Am. B 5, 1563-1572 (1988).
[CrossRef]

Abstreiter, G.

A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
[CrossRef] [PubMed]

F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001).
[CrossRef]

Altepeter, J. B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

Arakawa, Y.

J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 78, 3469-3471 (2001).
[CrossRef]

Ashmore, A. D.

R. Oulton, J. J. Finley, A. D. Ashmore, I. D. Gregory, I. D., Mowbray, M. S. Skolnick, M. J. Steer, M. A. San-Lin Liew, Migliorato, and A. J. Cullis, "Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot," Phys. Rev. B 66, 45313 (2002).

Axt, V. M.

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

Baier, M.

F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001).
[CrossRef]

Beham, E.

A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
[CrossRef] [PubMed]

F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001).
[CrossRef]

Bianucci, P.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

Bichler, M.

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

A. Zrenner, S. Stuffer, P. Ester, and M. Bichler, "Manipulations of a Qubit in a Semiconductor Quantum Dot," Adv. Solid State Phys. 45, 173-184 (2005).
[CrossRef]

A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
[CrossRef] [PubMed]

Borri, P.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Chen, J.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

Danckwerts, J.

J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, "Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots," Phys. Rev Lett. 91, 127401 (2003).
[CrossRef] [PubMed]

DiVicenzo, D. P.

D. P. DiVicenzo, "Quantum computation," Science 270, 255-261 (2000).
[CrossRef]

Ester, P.

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

A. Zrenner, S. Stuffer, P. Ester, and M. Bichler, "Manipulations of a Qubit in a Semiconductor Quantum Dot," Adv. Solid State Phys. 45, 173-184 (2005).
[CrossRef]

Findeis, F.

A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
[CrossRef] [PubMed]

F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001).
[CrossRef]

Finley, J. J.

R. Oulton, J. J. Finley, A. D. Ashmore, I. D. Gregory, I. D., Mowbray, M. S. Skolnick, M. J. Steer, M. A. San-Lin Liew, Migliorato, and A. J. Cullis, "Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot," Phys. Rev. B 66, 45313 (2002).

Förstner, J.

J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, "Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots," Phys. Rev Lett. 91, 127401 (2003).
[CrossRef] [PubMed]

Fox, A. M.

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

Fry, P. W.

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

Gammon, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin and R. Thew, "Quantum communication," Nature Photon. 1, 165-171 (2007).
[CrossRef]

Gokden, B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

Govorov, A. O.

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, "Decoherence of Rabi oscillations in a single quantum dot," Phys. Rev. Lett. 94, 057404 (2005).
[CrossRef] [PubMed]

Gregory, I. D.

R. Oulton, J. J. Finley, A. D. Ashmore, I. D. Gregory, I. D., Mowbray, M. S. Skolnick, M. J. Steer, M. A. San-Lin Liew, Migliorato, and A. J. Cullis, "Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot," Phys. Rev. B 66, 45313 (2002).

Hadfield, R. H.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

Heritage, J. P.

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Sot. Am. B 5, 1563-1572 (1988).
[CrossRef]

Htoon, H.

H. Htoon et al., "Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots," Phys. Rev. Lett. 88, 087401 (2002).
[CrossRef]

Katzer, D. S.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Kirschner, E. M.

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Sot. Am. B 5, 1563-1572 (1988).
[CrossRef]

Knorr, A.

J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, "Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots," Phys. Rev Lett. 91, 127401 (2003).
[CrossRef] [PubMed]

Kolodka, R. S.

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

Kuhn, T.

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

Kumar, P.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Lee, K. F.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

Li, X.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Liu, H. Y.

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

MacDonald, A. H.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

Machnikowski, P.

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

Medic, M.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

Muller, A.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

Nam, S. W.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

Nishioka, M.

J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 78, 3469-3471 (2001).
[CrossRef]

Oulton, R.

R. Oulton, J. J. Finley, A. D. Ashmore, I. D. Gregory, I. D., Mowbray, M. S. Skolnick, M. J. Steer, M. A. San-Lin Liew, Migliorato, and A. J. Cullis, "Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot," Phys. Rev. B 66, 45313 (2002).

Park, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Piermarocchi, C.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Ramsay, A. J.

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

Rossi, E.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

Schneider, S.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Sham, L. J.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Shih, C. K.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

Skiba-Szymanska, J.

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

Skolnick, M. S.

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

Steel, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

Steel, D. G.

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Stievater, T. H.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Stuffer, S.

A. Zrenner, S. Stuffer, P. Ester, and M. Bichler, "Manipulations of a Qubit in a Semiconductor Quantum Dot," Adv. Solid State Phys. 45, 173-184 (2005).
[CrossRef]

A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
[CrossRef] [PubMed]

Stufler, S.

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

Takagahara, T.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

Tatebayashi, J.

J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 78, 3469-3471 (2001).
[CrossRef]

Thew, R.

N. Gisin and R. Thew, "Quantum communication," Nature Photon. 1, 165-171 (2007).
[CrossRef]

Ulloa, S. E.

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, "Decoherence of Rabi oscillations in a single quantum dot," Phys. Rev. Lett. 94, 057404 (2005).
[CrossRef] [PubMed]

Villas-Bôas, J. M.

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, "Decoherence of Rabi oscillations in a single quantum dot," Phys. Rev. Lett. 94, 057404 (2005).
[CrossRef] [PubMed]

Wang, Q. Q.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

Weber, C.

J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, "Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots," Phys. Rev Lett. 91, 127401 (2003).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Sot. Am. B 5, 1563-1572 (1988).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Wu, Y.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

Xue, Q. K.

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

Zrenner, A.

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

A. Zrenner, S. Stuffer, P. Ester, and M. Bichler, "Manipulations of a Qubit in a Semiconductor Quantum Dot," Adv. Solid State Phys. 45, 173-184 (2005).
[CrossRef]

A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
[CrossRef] [PubMed]

F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001).
[CrossRef]

Adv. Solid State Phys.

A. Zrenner, S. Stuffer, P. Ester, and M. Bichler, "Manipulations of a Qubit in a Semiconductor Quantum Dot," Adv. Solid State Phys. 45, 173-184 (2005).
[CrossRef]

Appl. Phys. Lett.

J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 78, 3469-3471 (2001).
[CrossRef]

F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001).
[CrossRef]

J. Opt. Sot. Am. B

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Sot. Am. B 5, 1563-1572 (1988).
[CrossRef]

Nature

A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002).
[CrossRef] [PubMed]

Nature Photon.

N. Gisin and R. Thew, "Quantum communication," Nature Photon. 1, 165-171 (2007).
[CrossRef]

Phys. Rev Lett.

J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, "Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots," Phys. Rev Lett. 91, 127401 (2003).
[CrossRef] [PubMed]

Phys. Rev. B

R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).

Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).

R. Oulton, J. J. Finley, A. D. Ashmore, I. D. Gregory, I. D., Mowbray, M. S. Skolnick, M. J. Steer, M. A. San-Lin Liew, Migliorato, and A. J. Cullis, "Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot," Phys. Rev. B 66, 45313 (2002).

S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).

Phys. Rev. Lett.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008).
[CrossRef] [PubMed]

H. Htoon et al., "Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots," Phys. Rev. Lett. 88, 087401 (2002).
[CrossRef]

T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, "Decoherence of Rabi oscillations in a single quantum dot," Phys. Rev. Lett. 94, 057404 (2005).
[CrossRef] [PubMed]

P. Borri, W. Langbein, S. Schneider, and U. Woggon, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Science

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003).
[CrossRef] [PubMed]

D. P. DiVicenzo, "Quantum computation," Science 270, 255-261 (2000).
[CrossRef]

Other

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic illustration of the PC measurements. When the excitation laser is resonant with the transition energy, an exciton is created and measured as a PC signal.

Fig. 2.
Fig. 2.

(a) Macro-PL spectrum of our QD. The emission range extends over 1.3 µm. (b) PC spectra of a single QD in the region of the excitonic ground state energy. The background has been subtracted. In this CW-experiment, the laser energy is fixed for each spectrum, whereas the transition energy is tuned by gate voltage via the QCSE. A number of different laser energies have been recorded sequentially, each leading to a resonance at a specific voltage on the photodiode. With increasing gate voltage, the resonant PC intensity increases due to a faster tunneling rate.

Fig. 3.
Fig. 3.

Optical setup for pulse-excited PC measurements. Spectral pulse shapes of input and output from/to the Pr-doped fluoride fiber amplifier are shown in insets. The output pulse is amplified by approximately 14 dB. No spectral broadening is observed in the amplification process. Temporal pulsewidth of the output pulse is 7 ps which is close to the Fourier-transform limit.

Fig. 4.
Fig. 4.

Power dependence of the PC intensity. (a) Rabi oscillation of the PC at resonance for increasing excitation pulse area. The photocurrents are obtained for different accumulation times to obtain sufficient S/N ratio. The oscillation is fitted by an exponentially-damped sine function (red line). The green dashed line shows the theoretical maximum of the PC. A value of pulse area of 1 corresponds to an average CW excitation intensity of ~250 µW on the QD sample. (b) I-V properties at excitation of π/2 and π pulses centered at 1300.55 nm. The upper axis shows the energy shift of the exciton energy from the central wavelength of the excitation pulse converted from the gate voltage via the QCSE.

Metrics