Abstract

In this paper, fabrication of nano-scale 3-D features by total internal reflection generated single exposure counter propagating multiple evanescent waves interference lithography (TIR-MEWIL) in a positive tone resist is investigated numerically. Using a four incident plane waves configuration from an 364nm wavelength illumination source, the simulated results indicate that the proposed technique shows potential in realizing periodic surface relief features with diameter as small as 0.08λ and height-to-diameter aspect ratio as high as 10. It is also demonstrated that the sensitivity of multiple evanescent waves’ interference depends on the polarization and phase of the incident plane waves, and can be tailored to obtain different geometry features. A modified cellular automata algorithm has been employed to simulate three-dimensional photoresist profiles that would result from exposure to the studied evanescent waves interference configurations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
    [CrossRef]
  2. P. S. Ramanujam, "Evanescent polarization holographic recording of sub-200nm gratings in an azobenzene polyester," Opt. Lett. 28, 2375-2377 (2003).
    [CrossRef]
  3. S. Sainov, "Nanoscale surface-wave holographic recording," J. Phys. Conden. Matter 11, 9857-9860 (1999).
  4. S. Sainov, A. Espanet, C. Ecoffet, and D.-J. Lougnot, "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A: Pure and Applied Optics 5, 142-146 (2003).
    [CrossRef]
  5. S. Sainov and R. Stoycheva-Topalova, "Total Internal reflection holographic recording in very thin films," J. Opt. A: Pure and Applied Optics 2, S117-S120 (2000).
    [CrossRef]
  6. S. Sainov, N. Tomova, and V. Dragostinova, "Real time evanescent wave holograms," J. Mod. Opt. 35, 155-157 (1988).
    [CrossRef]
  7. J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt A: Pure and Applied Optics 8, S213-S218 (2006).
    [CrossRef]
  8. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, "Evanescent wave imaging in optical lithography," Proc. SPIE 6154, 61540 (2006).
  9. J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, "Immersion Lithography with numerical apertures above 2.0 using high index optical materials," Proc. SPIE 6520, 65204 (2007).
  10. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
    [CrossRef]
  11. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, "Four beams evanescent waves interference lithography for patterning of two dimensional features," Opt. Express 15, 3437-3451 (2007).
    [CrossRef] [PubMed]
  12. C. A. Mack, "Optical Lithography Modeling," in Microlithography-Science and Technology, J. R. Sheats and B. W. Smith, eds. (Marcel and Dekker, 1998), pp. 127-147.
  13. I. Karafyllidis, "A three-dimensional photoresist etching simulator for TCAD," Modeling Simul. Mater. Sci. Eng. 7, 157-168 (1999).
    [CrossRef]
  14. I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. R. Neureuther, "An Efficient Photoresist Development Simulator Based on Cellular Automata with Experimental Verification," IEEE Transactions on Semiconductor Manufacturing 13, 61-75 (2000).
    [CrossRef]
  15. V. N. Apletalin, Y. N. Kazantsev, and V. S. Solosin, "Frequency-selective surfaces with dumbbell shaped elements," Antennas and Propagation Society International Symposium, 2001. IEEE 4, 406-409 (2001).
  16. S. H. Kim, J. H. Choi, J. W. Baik, and Y. S. Kim, "CPW-fed log-periodic dumb-bell slot antenna array," Electron. Lett. 42, 436-438 (2006).
    [CrossRef]
  17. S. M. Roy, N. C. Karmakar, and I. Baibin, "Dumbbell-shaped defected ground structure," International Journal of RF and Microwave Computer-Aided Engineering 17, 210-224 (2007).
    [CrossRef]

2007 (3)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
[CrossRef]

S. M. Roy, N. C. Karmakar, and I. Baibin, "Dumbbell-shaped defected ground structure," International Journal of RF and Microwave Computer-Aided Engineering 17, 210-224 (2007).
[CrossRef]

J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, "Four beams evanescent waves interference lithography for patterning of two dimensional features," Opt. Express 15, 3437-3451 (2007).
[CrossRef] [PubMed]

2006 (2)

S. H. Kim, J. H. Choi, J. W. Baik, and Y. S. Kim, "CPW-fed log-periodic dumb-bell slot antenna array," Electron. Lett. 42, 436-438 (2006).
[CrossRef]

J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt A: Pure and Applied Optics 8, S213-S218 (2006).
[CrossRef]

2005 (1)

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
[CrossRef]

2003 (2)

P. S. Ramanujam, "Evanescent polarization holographic recording of sub-200nm gratings in an azobenzene polyester," Opt. Lett. 28, 2375-2377 (2003).
[CrossRef]

S. Sainov, A. Espanet, C. Ecoffet, and D.-J. Lougnot, "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A: Pure and Applied Optics 5, 142-146 (2003).
[CrossRef]

2000 (2)

S. Sainov and R. Stoycheva-Topalova, "Total Internal reflection holographic recording in very thin films," J. Opt. A: Pure and Applied Optics 2, S117-S120 (2000).
[CrossRef]

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. R. Neureuther, "An Efficient Photoresist Development Simulator Based on Cellular Automata with Experimental Verification," IEEE Transactions on Semiconductor Manufacturing 13, 61-75 (2000).
[CrossRef]

1999 (2)

I. Karafyllidis, "A three-dimensional photoresist etching simulator for TCAD," Modeling Simul. Mater. Sci. Eng. 7, 157-168 (1999).
[CrossRef]

S. Sainov, "Nanoscale surface-wave holographic recording," J. Phys. Conden. Matter 11, 9857-9860 (1999).

1988 (1)

S. Sainov, N. Tomova, and V. Dragostinova, "Real time evanescent wave holograms," J. Mod. Opt. 35, 155-157 (1988).
[CrossRef]

Baibin, I.

S. M. Roy, N. C. Karmakar, and I. Baibin, "Dumbbell-shaped defected ground structure," International Journal of RF and Microwave Computer-Aided Engineering 17, 210-224 (2007).
[CrossRef]

Baik, J. W.

S. H. Kim, J. H. Choi, J. W. Baik, and Y. S. Kim, "CPW-fed log-periodic dumb-bell slot antenna array," Electron. Lett. 42, 436-438 (2006).
[CrossRef]

Choi, J. H.

S. H. Kim, J. H. Choi, J. W. Baik, and Y. S. Kim, "CPW-fed log-periodic dumb-bell slot antenna array," Electron. Lett. 42, 436-438 (2006).
[CrossRef]

Chua, J. K.

Dragostinova, V.

S. Sainov, N. Tomova, and V. Dragostinova, "Real time evanescent wave holograms," J. Mod. Opt. 35, 155-157 (1988).
[CrossRef]

Ecoffet, C.

S. Sainov, A. Espanet, C. Ecoffet, and D.-J. Lougnot, "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A: Pure and Applied Optics 5, 142-146 (2003).
[CrossRef]

Espanet, A.

S. Sainov, A. Espanet, C. Ecoffet, and D.-J. Lougnot, "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A: Pure and Applied Optics 5, 142-146 (2003).
[CrossRef]

Fuh, J. Y. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
[CrossRef]

Hagouel, P. I.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. R. Neureuther, "An Efficient Photoresist Development Simulator Based on Cellular Automata with Experimental Verification," IEEE Transactions on Semiconductor Manufacturing 13, 61-75 (2000).
[CrossRef]

Hong, M. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
[CrossRef]

Hoshiyama, S.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
[CrossRef]

Kaneko, F.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
[CrossRef]

Karafyllidis, I.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. R. Neureuther, "An Efficient Photoresist Development Simulator Based on Cellular Automata with Experimental Verification," IEEE Transactions on Semiconductor Manufacturing 13, 61-75 (2000).
[CrossRef]

I. Karafyllidis, "A three-dimensional photoresist etching simulator for TCAD," Modeling Simul. Mater. Sci. Eng. 7, 157-168 (1999).
[CrossRef]

Karmakar, N. C.

S. M. Roy, N. C. Karmakar, and I. Baibin, "Dumbbell-shaped defected ground structure," International Journal of RF and Microwave Computer-Aided Engineering 17, 210-224 (2007).
[CrossRef]

Kato, K.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
[CrossRef]

Kawakami, T.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
[CrossRef]

Kim, S. H.

S. H. Kim, J. H. Choi, J. W. Baik, and Y. S. Kim, "CPW-fed log-periodic dumb-bell slot antenna array," Electron. Lett. 42, 436-438 (2006).
[CrossRef]

Kim, Y. S.

S. H. Kim, J. H. Choi, J. W. Baik, and Y. S. Kim, "CPW-fed log-periodic dumb-bell slot antenna array," Electron. Lett. 42, 436-438 (2006).
[CrossRef]

Lin, Q. Y.

Lougnot, D.-J.

S. Sainov, A. Espanet, C. Ecoffet, and D.-J. Lougnot, "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A: Pure and Applied Optics 5, 142-146 (2003).
[CrossRef]

Lu, L.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
[CrossRef]

Lukiyanchuk, B. S.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
[CrossRef]

Martinez-Anton, J. C.

J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt A: Pure and Applied Optics 8, S213-S218 (2006).
[CrossRef]

Murukeshan, V. M.

Neureuther, A. R.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. R. Neureuther, "An Efficient Photoresist Development Simulator Based on Cellular Automata with Experimental Verification," IEEE Transactions on Semiconductor Manufacturing 13, 61-75 (2000).
[CrossRef]

Ohdaira, Y.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
[CrossRef]

Ramanujam, P. S.

Roy, S. M.

S. M. Roy, N. C. Karmakar, and I. Baibin, "Dumbbell-shaped defected ground structure," International Journal of RF and Microwave Computer-Aided Engineering 17, 210-224 (2007).
[CrossRef]

Sainov, S.

S. Sainov, A. Espanet, C. Ecoffet, and D.-J. Lougnot, "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A: Pure and Applied Optics 5, 142-146 (2003).
[CrossRef]

S. Sainov and R. Stoycheva-Topalova, "Total Internal reflection holographic recording in very thin films," J. Opt. A: Pure and Applied Optics 2, S117-S120 (2000).
[CrossRef]

S. Sainov, "Nanoscale surface-wave holographic recording," J. Phys. Conden. Matter 11, 9857-9860 (1999).

S. Sainov, N. Tomova, and V. Dragostinova, "Real time evanescent wave holograms," J. Mod. Opt. 35, 155-157 (1988).
[CrossRef]

Shinbo, K.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
[CrossRef]

Stoycheva-Topalova, R.

S. Sainov and R. Stoycheva-Topalova, "Total Internal reflection holographic recording in very thin films," J. Opt. A: Pure and Applied Optics 2, S117-S120 (2000).
[CrossRef]

Tan, S. K.

Thanailakis, A.

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. R. Neureuther, "An Efficient Photoresist Development Simulator Based on Cellular Automata with Experimental Verification," IEEE Transactions on Semiconductor Manufacturing 13, 61-75 (2000).
[CrossRef]

Tomova, N.

S. Sainov, N. Tomova, and V. Dragostinova, "Real time evanescent wave holograms," J. Mod. Opt. 35, 155-157 (1988).
[CrossRef]

Zhou, Y.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005).
[CrossRef]

Electron. Lett. (1)

S. H. Kim, J. H. Choi, J. W. Baik, and Y. S. Kim, "CPW-fed log-periodic dumb-bell slot antenna array," Electron. Lett. 42, 436-438 (2006).
[CrossRef]

IEEE Transactions on Semiconductor Manufacturing (1)

I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. R. Neureuther, "An Efficient Photoresist Development Simulator Based on Cellular Automata with Experimental Verification," IEEE Transactions on Semiconductor Manufacturing 13, 61-75 (2000).
[CrossRef]

International Journal of RF and Microwave Computer-Aided Engineering (1)

S. M. Roy, N. C. Karmakar, and I. Baibin, "Dumbbell-shaped defected ground structure," International Journal of RF and Microwave Computer-Aided Engineering 17, 210-224 (2007).
[CrossRef]

J. Mod. Opt. (1)

S. Sainov, N. Tomova, and V. Dragostinova, "Real time evanescent wave holograms," J. Mod. Opt. 35, 155-157 (1988).
[CrossRef]

J. Opt A: Pure and Applied Optics (1)

J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt A: Pure and Applied Optics 8, S213-S218 (2006).
[CrossRef]

J. Opt. A: Pure and Applied Optics (2)

S. Sainov, A. Espanet, C. Ecoffet, and D.-J. Lougnot, "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A: Pure and Applied Optics 5, 142-146 (2003).
[CrossRef]

S. Sainov and R. Stoycheva-Topalova, "Total Internal reflection holographic recording in very thin films," J. Opt. A: Pure and Applied Optics 2, S117-S120 (2000).
[CrossRef]

J. Phys. Conden. Matter (1)

S. Sainov, "Nanoscale surface-wave holographic recording," J. Phys. Conden. Matter 11, 9857-9860 (1999).

Modeling Simul. Mater. Sci. Eng. (1)

I. Karafyllidis, "A three-dimensional photoresist etching simulator for TCAD," Modeling Simul. Mater. Sci. Eng. 7, 157-168 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Physica Scripta (1)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
[CrossRef]

Other (4)

C. A. Mack, "Optical Lithography Modeling," in Microlithography-Science and Technology, J. R. Sheats and B. W. Smith, eds. (Marcel and Dekker, 1998), pp. 127-147.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, "Evanescent wave imaging in optical lithography," Proc. SPIE 6154, 61540 (2006).

J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, "Immersion Lithography with numerical apertures above 2.0 using high index optical materials," Proc. SPIE 6520, 65204 (2007).

V. N. Apletalin, Y. N. Kazantsev, and V. S. Solosin, "Frequency-selective surfaces with dumbbell shaped elements," Antennas and Propagation Society International Symposium, 2001. IEEE 4, 406-409 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Schematic illustration of a possible set-up to realize single exposure counter-propagating four evanescent waves interference (b) two-dimensional perspective

Fig. 2.
Fig. 2.

Outline of computation scheme for obtaining simulated photoresist structures

Fig. 3.
Fig. 3.

Normalized |Ψet|2 profile on the interface between prism and photoresist and on the cross-sectional plane along the diagonal direction generated by (a) four s-polarized incident plane waves and (b) four p-polarized incident plane waves

Fig. 4.
Fig. 4.

(a) |Ψet|2 z profile and (b) |Ψet|2 z profile at the interface along the diagonal direction

Fig. 5.
Fig. 5.

(a). Color map of the variation of intensity contrast across the dotted white line with different combinations of phase shift a between beams 1 and 3, and between 2 and 4 (b). Interference intensity profile obtained with the best combination of phase difference that correspond to the highest contrast along the dotted white line (across the waist of a dumb-bell shaped feature)

Fig. 6.
Fig. 6.

Resist topology corresponding to evanescent intereference generated by (a) four s-polarized incident plane waves (b) four p-polarized incident plane waves (c) two s-polarized incident plane wave and two p-polarized incident plane waves with δ 1,3=π/2 and δ 2,4=-π/2

Fig. 7.
Fig. 7.

Resist contours (black regions) in X-Y plane at zhalf =-60nm.

Tables (1)

Tables Icon

Table 1 Summary of analytical expressions |Ψet|2z=0 and periodicity along X, Y and the diagonal.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ψ et 2 = exp ( 2 α t z ) ×
{ [ Σ w = 1 4 A x ( w ) τ s p cos ( 2 π n i λ φ w + η s p + Φ w ) ] 2 + [ Σ w = 1 4 A x ( w ) τ s p sin ( 2 π n i λ φ w + η s p + Φ w ) ] 2
+ [ Σ w = 1 4 A y ( w ) τ s p cos ( 2 π n i λ φ w + η s p + Φ w ) ] 2 + [ Σ w = 1 4 A y ( w ) τ s p sin ( 2 π n i λ φ w + η s p + Φ w ) ] 2
+ [ Σ w = 1 4 A z ( w ) τ s p cos ( 2 π n i λ φ w + η s p + Φ w ) ] 2 + [ Σ w = 1 4 A z ( w ) χ s p sin ( 2 π n i λ φ w + η s p + Φ w ) ] 2 }
C i , j , k t o + dt = C i , j , k t o + dC adj dt + dC edg dt + dC vtx dt
dC adj dt = ( C i + 1 , j , k t o + C i 1 , j , k t o + C i , j + 1 , k t o + C i , j 1 , k t o ) + B i , j , k + 1 t o + B i , j , k 1 t o ) R i , j , k dt a
dC edg dt = γ edg ( ( C i + 1 , j + 1 , k t o + C i 1 , j + 1 , k t o + C i + 1 , j 1 , k t o + C i + 1 , j 1 , k t o ) + B i + 1 , j , k + 1 t o + B i 1 , j , k + 1 t o + B i , j + 1 , k + 1 t O + B i , j 1 , k + 1 t O
+ B i + 1 , j , k 1 t o + B i 1 , j , k 1 t o + B i , j + 1 , k 1 t o + B i , j 1 , k 1 t o ) 2 R i , j , k 2 t o dt a 2
dC vtx dt = γ vtx ( B i + 1 , j + 1 , k + 1 t o + B i 1 , j + 1 , k + 1 t o + B i + 1 , j 1 , k + 1 t o + B i + 1 , j 1 , k + 1 t o
+ B i + 1 , j + 1 , k 1 t o + B i 1 , j + 1 , k 1 t o + B i + 1 , j 1 , k 1 t o + B i + 1 , j 1 , k 1 t o ) 3 3 8 a 3 R i , j , k 3 t o 2 dt
B I , J , K t o = { 1 C I , J , K t o = 1 0 otherwise

Metrics