Abstract

Waveguiding in periodical structures of the size of the wavelength is applied to increase the functional spectral band of diffractive optics. The deviation of the effective refractive index between waveguides as a function of the wavelength is utilized to compensate the strong wavelength dependence of the efficiency of diffraction gratings.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Braam, J. Okkonen, M. Aikio, K. Makisara, and J. Bolton, “Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA”, in Imaging Spectrometry of the Terrestial Environment, G. Vane, ed., Proc. SPIE1937, 142–151 (1993).
    [Crossref]
  2. S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on diffraction gratings,” Sensors and Actuators A 92, 88–95 (2001).
    [Crossref]
  3. J. Pietarinen, T. Vallius, and J. Turunen, “Wideband four-level transmission gratings with flattened spectral efficiency,” Optics Express,  14, No. 7 2583–2588 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2583
    [PubMed]
  4. R. Petit, ed., Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
    [Crossref]
  5. J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” in Progress in Optics, E. Wolf, ed., chap. V (Elsevier, Amsterdam, 2000) Vol. XL.
  6. H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).
  7. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, Berlin, 1997).
  8. M. C. Hutley, Diffraction Gratings (Academic Press, Orlando, 1982).
  9. C. Sauvan, P. Lalanne, and M.-S. L. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett. 29, 1593–1595 (2004).
    [Crossref] [PubMed]
  10. T. Tamir, Integrated Optics (Springer-Verlag; 2nd edition, 1979).
  11. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [Crossref]
  12. E. Noponen, A. Vasara, and J. Turunen, “Parametric optimization of multilevel diffractive optical elements by electromagnetic theory,” Appl. Opt. 31, 5910–5912 (1992).
    [Crossref] [PubMed]
  13. K. Blomstedt, E. Noponen, and J. Turunen, “Surface-profile optimization of diffractive imaging lenses,” J. Opt. Soc. Am. A 18, 521–525 (2001).
    [Crossref]

2004 (1)

2001 (2)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on diffraction gratings,” Sensors and Actuators A 92, 88–95 (2001).
[Crossref]

K. Blomstedt, E. Noponen, and J. Turunen, “Surface-profile optimization of diffractive imaging lenses,” J. Opt. Soc. Am. A 18, 521–525 (2001).
[Crossref]

1996 (1)

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
[Crossref]

1992 (1)

1982 (1)

M. C. Hutley, Diffraction Gratings (Academic Press, Orlando, 1982).

Aikio, M.

B. Braam, J. Okkonen, M. Aikio, K. Makisara, and J. Bolton, “Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA”, in Imaging Spectrometry of the Terrestial Environment, G. Vane, ed., Proc. SPIE1937, 142–151 (1993).
[Crossref]

Blomstedt, K.

K. Blomstedt, E. Noponen, and J. Turunen, “Surface-profile optimization of diffractive imaging lenses,” J. Opt. Soc. Am. A 18, 521–525 (2001).
[Crossref]

Bolton, J.

B. Braam, J. Okkonen, M. Aikio, K. Makisara, and J. Bolton, “Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA”, in Imaging Spectrometry of the Terrestial Environment, G. Vane, ed., Proc. SPIE1937, 142–151 (1993).
[Crossref]

Braam, B.

B. Braam, J. Okkonen, M. Aikio, K. Makisara, and J. Bolton, “Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA”, in Imaging Spectrometry of the Terrestial Environment, G. Vane, ed., Proc. SPIE1937, 142–151 (1993).
[Crossref]

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic Press, Orlando, 1982).

Kong, S. H.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on diffraction gratings,” Sensors and Actuators A 92, 88–95 (2001).
[Crossref]

Kuittinen, M.

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” in Progress in Optics, E. Wolf, ed., chap. V (Elsevier, Amsterdam, 2000) Vol. XL.

Lalanne, P.

Lee, M.-S. L.

Li, L.

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
[Crossref]

Makisara, K.

B. Braam, J. Okkonen, M. Aikio, K. Makisara, and J. Bolton, “Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA”, in Imaging Spectrometry of the Terrestial Environment, G. Vane, ed., Proc. SPIE1937, 142–151 (1993).
[Crossref]

Noponen, E.

K. Blomstedt, E. Noponen, and J. Turunen, “Surface-profile optimization of diffractive imaging lenses,” J. Opt. Soc. Am. A 18, 521–525 (2001).
[Crossref]

E. Noponen, A. Vasara, and J. Turunen, “Parametric optimization of multilevel diffractive optical elements by electromagnetic theory,” Appl. Opt. 31, 5910–5912 (1992).
[Crossref] [PubMed]

Okkonen, J.

B. Braam, J. Okkonen, M. Aikio, K. Makisara, and J. Bolton, “Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA”, in Imaging Spectrometry of the Terrestial Environment, G. Vane, ed., Proc. SPIE1937, 142–151 (1993).
[Crossref]

Pietarinen, J.

J. Pietarinen, T. Vallius, and J. Turunen, “Wideband four-level transmission gratings with flattened spectral efficiency,” Optics Express,  14, No. 7 2583–2588 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2583
[PubMed]

Sauvan, C.

Tamir, T.

T. Tamir, Integrated Optics (Springer-Verlag; 2nd edition, 1979).

Turunen, J.

K. Blomstedt, E. Noponen, and J. Turunen, “Surface-profile optimization of diffractive imaging lenses,” J. Opt. Soc. Am. A 18, 521–525 (2001).
[Crossref]

E. Noponen, A. Vasara, and J. Turunen, “Parametric optimization of multilevel diffractive optical elements by electromagnetic theory,” Appl. Opt. 31, 5910–5912 (1992).
[Crossref] [PubMed]

J. Pietarinen, T. Vallius, and J. Turunen, “Wideband four-level transmission gratings with flattened spectral efficiency,” Optics Express,  14, No. 7 2583–2588 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2583
[PubMed]

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” in Progress in Optics, E. Wolf, ed., chap. V (Elsevier, Amsterdam, 2000) Vol. XL.

Vallius, T.

J. Pietarinen, T. Vallius, and J. Turunen, “Wideband four-level transmission gratings with flattened spectral efficiency,” Optics Express,  14, No. 7 2583–2588 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2583
[PubMed]

Vasara, A.

Wijngaards, D. D. L.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on diffraction gratings,” Sensors and Actuators A 92, 88–95 (2001).
[Crossref]

Wolffenbuttel, R. F.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on diffraction gratings,” Sensors and Actuators A 92, 88–95 (2001).
[Crossref]

Wyrowski, F.

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” in Progress in Optics, E. Wolf, ed., chap. V (Elsevier, Amsterdam, 2000) Vol. XL.

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

K. Blomstedt, E. Noponen, and J. Turunen, “Surface-profile optimization of diffractive imaging lenses,” J. Opt. Soc. Am. A 18, 521–525 (2001).
[Crossref]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
[Crossref]

Opt. Lett. (1)

Optics Express (1)

J. Pietarinen, T. Vallius, and J. Turunen, “Wideband four-level transmission gratings with flattened spectral efficiency,” Optics Express,  14, No. 7 2583–2588 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2583
[PubMed]

Sensors and Actuators A (1)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on diffraction gratings,” Sensors and Actuators A 92, 88–95 (2001).
[Crossref]

Other (7)

B. Braam, J. Okkonen, M. Aikio, K. Makisara, and J. Bolton, “Design and first test results of the Finnish airborne imaging spectrometer for different applications, AISA”, in Imaging Spectrometry of the Terrestial Environment, G. Vane, ed., Proc. SPIE1937, 142–151 (1993).
[Crossref]

T. Tamir, Integrated Optics (Springer-Verlag; 2nd edition, 1979).

R. Petit, ed., Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
[Crossref]

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” in Progress in Optics, E. Wolf, ed., chap. V (Elsevier, Amsterdam, 2000) Vol. XL.

H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).

J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, Berlin, 1997).

M. C. Hutley, Diffraction Gratings (Academic Press, Orlando, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The double groove type of transmission-grating profile. (b) The electric energy density in and near the grating region.

Fig. 2.
Fig. 2.

(a) The lowest-order effective refractive indices of two pillars, (b) their difference n eff2-n eff1 on λ and 1/λ, and (c) the wavelength dependence of the phase difference caused by the pillars.

Fig. 3.
Fig. 3.

Spectral efficiency curves of diffraction order -1 for (a) IR-grating and (b) Visible band grating. Dashed lines indicate the efficiency in TE polarization and the solid line in TM polarization for which the grating is designed.

Fig. 4.
Fig. 4.

Comparison of the theoretical spectral efficiency (curves) and experimental results (marks). Dotted line TM, dashed line TE and solid line for the unpolarized light.+indicates the measurement results of TM polarization, ×TE and ∘ the unpolarized light.

Fig. 5.
Fig. 5.

SEM image of the cross-section of the fabricated fused silica grating.

Tables (1)

Tables Icon

Table 1. Quantitative characterization of the designed and fabricated grating profiles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = ( h 2 n eff 2 h 1 n eff 1 h 1 n 1 ) 2 π λ .

Metrics