Abstract

The development of voltage-sensitive dyes has revolutionized cardiac electrophysiology and made optical imaging of cardiac electrical activity possible. Photon diffusion models coupled to electrical excitation models have been successful in qualitatively predicting the shape of the optical action potential and its dependence on subsurface electrical wave orientation. However, the accuracy of the diffusion equation in the visible range, especially for thin tissue preparations, remains unclear. Here, we compare diffusion and Monte Carlo (MC) based models and we investigate the role of tissue thickness. All computational results are compared to experimental data obtained from intact guinea pig hearts. We show that the subsurface volume contributing to the epi-fluorescence signal extends deeper in the tissue when using MC models, resulting in longer optical upstroke durations which are in better agreement with experiments. The optical upstroke morphology, however, strongly correlates to the subsurface propagation direction independent of the model and is consistent with our experimental observations.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging electrical excitation inside the myocardial wall

Bogdan G Mitrea, Bryan J Caldwell, and Arkady M Pertsov
Biomed. Opt. Express 2(3) 620-633 (2011)

Depth-resolved optical imaging of transmural electrical propagation in perfused heart

Elizabeth M. C. Hillman, Olivier Bernus, Emily Pease, Matthew B. Bouchard, and Arkady Pertsov
Opt. Express 15(26) 17827-17841 (2007)

Volumetric optical mapping in early embryonic hearts using light-sheet microscopy

Pei Ma, Dennis C. Chan, Shi Gu, Michiko Watanabe, Michael W. Jenkins, and Andrew M. Rollins
Biomed. Opt. Express 7(12) 5120-5128 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Streeter, Handbook of Physiology, (Bethesda, MD, American Physiological Society, 1979).
  2. R. A. Gray, A. M. Pertsov, and J. Jalife, “Spatial and temporal organization during cardiac fibrillation,” Nature 392, 75–78 (1998).
    [Crossref] [PubMed]
  3. O. Bernus, M. Wellner, and A. M. Pertsov, “Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves,” Phys. Rev. E 70, 061913 (2004).
  4. F. Fenton and A. Karma, “Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation,” Chaos 8, 20–47 (1998).
    [Crossref]
  5. K.H.J.W. Ten Tusscher, R. Hren, and A.V. Panfilov, “Organization of ventricular fibrillation in the human heart,” Circ. Res. 100, e87–e101 (2007).
    [Crossref] [PubMed]
  6. D. S. Rosenbaum and J. Jalife, Optical mapping of Cardiac excitation and arrhythmias, (Armonk, N Y, Futura Publishing Company, Inc.2001).
  7. I. R. Efimov, V. P. Nikolski, and G. Salama, “Optical imaging of the heart,” Circ. Res. 95, 21–33 (2004).
    [Crossref] [PubMed]
  8. V. D. Khait, O. Bernus, S. Mironov, and A. M. Pertsov, “Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging,” J. Biomed. Opt. 11, 34007 (2006).
    [Crossref] [PubMed]
  9. M. Wellner, O. Bernus, S. F. Mironov, and A. M. Pertsov, “Multiplicative optical tomography of cardiac electrical activity,” Phys. Med. Biol. 51, 4429–46 (2006).
    [Crossref] [PubMed]
  10. E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. M. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15, 17827–17841 (2007).
    [Crossref]
  11. S. D. Girouard, K. R. Laurita, and D. S. Rosenbaum, “Unique properties of cardiac action potentials recorded with voltage-sensitive dyes,” J. Cardiovasc. Electrophysiol. 7, 1024–1038 (1996).
    [Crossref] [PubMed]
  12. W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov, and J. Jalife, “Visualizing excitation waves in cardiac muscle using transillumination,” Biophys. J. 80, 516–530 (2001).
    [Crossref] [PubMed]
  13. L. Ding, R. Splinter, and S. B. Knisley, “Quantifying spatial localization of optical mapping using Monte Carlo simulations,” IEEE Trans. Biomed. Eng. 48, 1098–1107 (2001).
    [Crossref] [PubMed]
  14. D. L. Janks and B. J. Roth, “Averaging over depth during optical mapping of unipolar stimulation,” IEEE Trans. Biomed. Eng. 49, 1051–1054 (2002).
    [Crossref] [PubMed]
  15. M. A. Bray and J. P. Wikswo, “Examination of optical depth effects on fluorescence imaging of cardiac propagation,” Biophys. J. 85, 4134–4145 (2003).
    [Crossref] [PubMed]
  16. C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
    [Crossref] [PubMed]
  17. C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin, and A. M. Pertsov, “Optical action potential upstroke morphology reveals near-surface transmural propagation direction,” Circ. Res. 97, 277–284 (2005).
    [Crossref] [PubMed]
  18. C.W. Zemlin, O. Bernus, A. Matiukas, C.J. Hyatt, and A.M. Pertsov, “Extracting Intramural Wavefront Orientation From Optical Upstroke Shapes in Whole Hearts,” Biophys. J. 95, 942–950 (2008).
    [Crossref] [PubMed]
  19. M.J. Bishop, G. Bub, A. Garny, D.J. Gavaghan, and B. Rodriguez, “An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: A Monte Carlo simulation study,” Physica D (to be published).
  20. O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, “Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods,” Phys. Med. Biol. 50, 215–229 (2005).
    [Crossref] [PubMed]
  21. M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
    [Crossref] [PubMed]
  22. G. M. Faber and Y. Rudy, “Action potential and contractility changes in Na+i overloaded cardiac myocytes: a simulation study,” Biophys. J. 78, 2392–2404 (2000).
    [Crossref] [PubMed]
  23. O. Bernus, K. S. Mukund, and A. M. Pertsov, “Detection of intramyocardial scroll waves using absorptive transillumination imaging,” J. Biomed. Opt. 12, 14035 (2007).
    [Crossref]
  24. R. Zaritsky and A. M. Pertsov , “Simulation of 2-D spiral wave interactions on a Pentium-based cluster,” in Proc. of Neural, Parallel, and Scientific Computations, M. P. Bekakos, G. S. Ladde, N. G. Medhin, and M. Sambandham, eds., (Dynamic Publisher, Atlanta, 2002).
  25. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML — Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [Crossref] [PubMed]
  26. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “CONV — Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
    [Crossref]
  27. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues — I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [Crossref] [PubMed]
  28. B. J. Roth, “Photon density measured over a cut surface: implications for optical mapping of the heart,” IEEE Trans. Biomed. Eng. 55, 2102–2104 (2008).
    [Crossref] [PubMed]

2008 (2)

C.W. Zemlin, O. Bernus, A. Matiukas, C.J. Hyatt, and A.M. Pertsov, “Extracting Intramural Wavefront Orientation From Optical Upstroke Shapes in Whole Hearts,” Biophys. J. 95, 942–950 (2008).
[Crossref] [PubMed]

B. J. Roth, “Photon density measured over a cut surface: implications for optical mapping of the heart,” IEEE Trans. Biomed. Eng. 55, 2102–2104 (2008).
[Crossref] [PubMed]

2007 (3)

O. Bernus, K. S. Mukund, and A. M. Pertsov, “Detection of intramyocardial scroll waves using absorptive transillumination imaging,” J. Biomed. Opt. 12, 14035 (2007).
[Crossref]

K.H.J.W. Ten Tusscher, R. Hren, and A.V. Panfilov, “Organization of ventricular fibrillation in the human heart,” Circ. Res. 100, e87–e101 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. M. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15, 17827–17841 (2007).
[Crossref]

2006 (3)

V. D. Khait, O. Bernus, S. Mironov, and A. M. Pertsov, “Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging,” J. Biomed. Opt. 11, 34007 (2006).
[Crossref] [PubMed]

M. Wellner, O. Bernus, S. F. Mironov, and A. M. Pertsov, “Multiplicative optical tomography of cardiac electrical activity,” Phys. Med. Biol. 51, 4429–46 (2006).
[Crossref] [PubMed]

M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
[Crossref] [PubMed]

2005 (2)

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, “Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods,” Phys. Med. Biol. 50, 215–229 (2005).
[Crossref] [PubMed]

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin, and A. M. Pertsov, “Optical action potential upstroke morphology reveals near-surface transmural propagation direction,” Circ. Res. 97, 277–284 (2005).
[Crossref] [PubMed]

2004 (2)

I. R. Efimov, V. P. Nikolski, and G. Salama, “Optical imaging of the heart,” Circ. Res. 95, 21–33 (2004).
[Crossref] [PubMed]

O. Bernus, M. Wellner, and A. M. Pertsov, “Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves,” Phys. Rev. E 70, 061913 (2004).

2003 (2)

M. A. Bray and J. P. Wikswo, “Examination of optical depth effects on fluorescence imaging of cardiac propagation,” Biophys. J. 85, 4134–4145 (2003).
[Crossref] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

2002 (1)

D. L. Janks and B. J. Roth, “Averaging over depth during optical mapping of unipolar stimulation,” IEEE Trans. Biomed. Eng. 49, 1051–1054 (2002).
[Crossref] [PubMed]

2001 (2)

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov, and J. Jalife, “Visualizing excitation waves in cardiac muscle using transillumination,” Biophys. J. 80, 516–530 (2001).
[Crossref] [PubMed]

L. Ding, R. Splinter, and S. B. Knisley, “Quantifying spatial localization of optical mapping using Monte Carlo simulations,” IEEE Trans. Biomed. Eng. 48, 1098–1107 (2001).
[Crossref] [PubMed]

2000 (1)

G. M. Faber and Y. Rudy, “Action potential and contractility changes in Na+i overloaded cardiac myocytes: a simulation study,” Biophys. J. 78, 2392–2404 (2000).
[Crossref] [PubMed]

1998 (2)

R. A. Gray, A. M. Pertsov, and J. Jalife, “Spatial and temporal organization during cardiac fibrillation,” Nature 392, 75–78 (1998).
[Crossref] [PubMed]

F. Fenton and A. Karma, “Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation,” Chaos 8, 20–47 (1998).
[Crossref]

1997 (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “CONV — Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[Crossref]

1996 (1)

S. D. Girouard, K. R. Laurita, and D. S. Rosenbaum, “Unique properties of cardiac action potentials recorded with voltage-sensitive dyes,” J. Cardiovasc. Electrophysiol. 7, 1024–1038 (1996).
[Crossref] [PubMed]

1995 (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML — Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

1989 (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues — I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref] [PubMed]

Baxter, W.

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov, and J. Jalife, “Visualizing excitation waves in cardiac muscle using transillumination,” Biophys. J. 80, 516–530 (2001).
[Crossref] [PubMed]

Berenfeld, O.

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

Bernus, O.

C.W. Zemlin, O. Bernus, A. Matiukas, C.J. Hyatt, and A.M. Pertsov, “Extracting Intramural Wavefront Orientation From Optical Upstroke Shapes in Whole Hearts,” Biophys. J. 95, 942–950 (2008).
[Crossref] [PubMed]

O. Bernus, K. S. Mukund, and A. M. Pertsov, “Detection of intramyocardial scroll waves using absorptive transillumination imaging,” J. Biomed. Opt. 12, 14035 (2007).
[Crossref]

E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. M. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15, 17827–17841 (2007).
[Crossref]

M. Wellner, O. Bernus, S. F. Mironov, and A. M. Pertsov, “Multiplicative optical tomography of cardiac electrical activity,” Phys. Med. Biol. 51, 4429–46 (2006).
[Crossref] [PubMed]

V. D. Khait, O. Bernus, S. Mironov, and A. M. Pertsov, “Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging,” J. Biomed. Opt. 11, 34007 (2006).
[Crossref] [PubMed]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, “Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods,” Phys. Med. Biol. 50, 215–229 (2005).
[Crossref] [PubMed]

O. Bernus, M. Wellner, and A. M. Pertsov, “Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves,” Phys. Rev. E 70, 061913 (2004).

Bishop, M. J.

M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
[Crossref] [PubMed]

Bishop, M.J.

M.J. Bishop, G. Bub, A. Garny, D.J. Gavaghan, and B. Rodriguez, “An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: A Monte Carlo simulation study,” Physica D (to be published).

Bouchard, M. B.

Bray, M. A.

M. A. Bray and J. P. Wikswo, “Examination of optical depth effects on fluorescence imaging of cardiac propagation,” Biophys. J. 85, 4134–4145 (2003).
[Crossref] [PubMed]

Bub, G.

M.J. Bishop, G. Bub, A. Garny, D.J. Gavaghan, and B. Rodriguez, “An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: A Monte Carlo simulation study,” Physica D (to be published).

Ding, L.

L. Ding, R. Splinter, and S. B. Knisley, “Quantifying spatial localization of optical mapping using Monte Carlo simulations,” IEEE Trans. Biomed. Eng. 48, 1098–1107 (2001).
[Crossref] [PubMed]

Eason, J.

M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
[Crossref] [PubMed]

Efimov, I. R.

I. R. Efimov, V. P. Nikolski, and G. Salama, “Optical imaging of the heart,” Circ. Res. 95, 21–33 (2004).
[Crossref] [PubMed]

Faber, G. M.

G. M. Faber and Y. Rudy, “Action potential and contractility changes in Na+i overloaded cardiac myocytes: a simulation study,” Biophys. J. 78, 2392–2404 (2000).
[Crossref] [PubMed]

Fenton, F.

F. Fenton and A. Karma, “Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation,” Chaos 8, 20–47 (1998).
[Crossref]

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues — I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref] [PubMed]

Garny, A.

M.J. Bishop, G. Bub, A. Garny, D.J. Gavaghan, and B. Rodriguez, “An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: A Monte Carlo simulation study,” Physica D (to be published).

Gavaghan, D. J.

M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
[Crossref] [PubMed]

Gavaghan, D.J.

M.J. Bishop, G. Bub, A. Garny, D.J. Gavaghan, and B. Rodriguez, “An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: A Monte Carlo simulation study,” Physica D (to be published).

Girouard, S. D.

S. D. Girouard, K. R. Laurita, and D. S. Rosenbaum, “Unique properties of cardiac action potentials recorded with voltage-sensitive dyes,” J. Cardiovasc. Electrophysiol. 7, 1024–1038 (1996).
[Crossref] [PubMed]

Gray, R. A.

R. A. Gray, A. M. Pertsov, and J. Jalife, “Spatial and temporal organization during cardiac fibrillation,” Nature 392, 75–78 (1998).
[Crossref] [PubMed]

Hillman, E. M. C.

Hren, R.

K.H.J.W. Ten Tusscher, R. Hren, and A.V. Panfilov, “Organization of ventricular fibrillation in the human heart,” Circ. Res. 100, e87–e101 (2007).
[Crossref] [PubMed]

Hyatt, C. J.

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin, and A. M. Pertsov, “Optical action potential upstroke morphology reveals near-surface transmural propagation direction,” Circ. Res. 97, 277–284 (2005).
[Crossref] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

Hyatt, C.J.

C.W. Zemlin, O. Bernus, A. Matiukas, C.J. Hyatt, and A.M. Pertsov, “Extracting Intramural Wavefront Orientation From Optical Upstroke Shapes in Whole Hearts,” Biophys. J. 95, 942–950 (2008).
[Crossref] [PubMed]

Jacques, S. L.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “CONV — Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[Crossref]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML — Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Jalife, J.

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov, and J. Jalife, “Visualizing excitation waves in cardiac muscle using transillumination,” Biophys. J. 80, 516–530 (2001).
[Crossref] [PubMed]

R. A. Gray, A. M. Pertsov, and J. Jalife, “Spatial and temporal organization during cardiac fibrillation,” Nature 392, 75–78 (1998).
[Crossref] [PubMed]

D. S. Rosenbaum and J. Jalife, Optical mapping of Cardiac excitation and arrhythmias, (Armonk, N Y, Futura Publishing Company, Inc.2001).

Janks, D. L.

D. L. Janks and B. J. Roth, “Averaging over depth during optical mapping of unipolar stimulation,” IEEE Trans. Biomed. Eng. 49, 1051–1054 (2002).
[Crossref] [PubMed]

Karma, A.

F. Fenton and A. Karma, “Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation,” Chaos 8, 20–47 (1998).
[Crossref]

Khait, V. D.

V. D. Khait, O. Bernus, S. Mironov, and A. M. Pertsov, “Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging,” J. Biomed. Opt. 11, 34007 (2006).
[Crossref] [PubMed]

Knisley, S. B.

L. Ding, R. Splinter, and S. B. Knisley, “Quantifying spatial localization of optical mapping using Monte Carlo simulations,” IEEE Trans. Biomed. Eng. 48, 1098–1107 (2001).
[Crossref] [PubMed]

Laurita, K. R.

S. D. Girouard, K. R. Laurita, and D. S. Rosenbaum, “Unique properties of cardiac action potentials recorded with voltage-sensitive dyes,” J. Cardiovasc. Electrophysiol. 7, 1024–1038 (1996).
[Crossref] [PubMed]

Matiukas, A.

C.W. Zemlin, O. Bernus, A. Matiukas, C.J. Hyatt, and A.M. Pertsov, “Extracting Intramural Wavefront Orientation From Optical Upstroke Shapes in Whole Hearts,” Biophys. J. 95, 942–950 (2008).
[Crossref] [PubMed]

Mironov, S.

V. D. Khait, O. Bernus, S. Mironov, and A. M. Pertsov, “Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging,” J. Biomed. Opt. 11, 34007 (2006).
[Crossref] [PubMed]

Mironov, S. F.

M. Wellner, O. Bernus, S. F. Mironov, and A. M. Pertsov, “Multiplicative optical tomography of cardiac electrical activity,” Phys. Med. Biol. 51, 4429–46 (2006).
[Crossref] [PubMed]

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin, and A. M. Pertsov, “Optical action potential upstroke morphology reveals near-surface transmural propagation direction,” Circ. Res. 97, 277–284 (2005).
[Crossref] [PubMed]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, “Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods,” Phys. Med. Biol. 50, 215–229 (2005).
[Crossref] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov, and J. Jalife, “Visualizing excitation waves in cardiac muscle using transillumination,” Biophys. J. 80, 516–530 (2001).
[Crossref] [PubMed]

Mukund, K. S.

O. Bernus, K. S. Mukund, and A. M. Pertsov, “Detection of intramyocardial scroll waves using absorptive transillumination imaging,” J. Biomed. Opt. 12, 14035 (2007).
[Crossref]

Nikolski, V. P.

I. R. Efimov, V. P. Nikolski, and G. Salama, “Optical imaging of the heart,” Circ. Res. 95, 21–33 (2004).
[Crossref] [PubMed]

Panfilov, A.V.

K.H.J.W. Ten Tusscher, R. Hren, and A.V. Panfilov, “Organization of ventricular fibrillation in the human heart,” Circ. Res. 100, e87–e101 (2007).
[Crossref] [PubMed]

Patterson, M. S.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues — I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref] [PubMed]

Pease, E.

Pertsov, A. M.

E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. M. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15, 17827–17841 (2007).
[Crossref]

O. Bernus, K. S. Mukund, and A. M. Pertsov, “Detection of intramyocardial scroll waves using absorptive transillumination imaging,” J. Biomed. Opt. 12, 14035 (2007).
[Crossref]

M. Wellner, O. Bernus, S. F. Mironov, and A. M. Pertsov, “Multiplicative optical tomography of cardiac electrical activity,” Phys. Med. Biol. 51, 4429–46 (2006).
[Crossref] [PubMed]

V. D. Khait, O. Bernus, S. Mironov, and A. M. Pertsov, “Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging,” J. Biomed. Opt. 11, 34007 (2006).
[Crossref] [PubMed]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, “Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods,” Phys. Med. Biol. 50, 215–229 (2005).
[Crossref] [PubMed]

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin, and A. M. Pertsov, “Optical action potential upstroke morphology reveals near-surface transmural propagation direction,” Circ. Res. 97, 277–284 (2005).
[Crossref] [PubMed]

O. Bernus, M. Wellner, and A. M. Pertsov, “Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves,” Phys. Rev. E 70, 061913 (2004).

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov, and J. Jalife, “Visualizing excitation waves in cardiac muscle using transillumination,” Biophys. J. 80, 516–530 (2001).
[Crossref] [PubMed]

R. A. Gray, A. M. Pertsov, and J. Jalife, “Spatial and temporal organization during cardiac fibrillation,” Nature 392, 75–78 (1998).
[Crossref] [PubMed]

R. Zaritsky and A. M. Pertsov , “Simulation of 2-D spiral wave interactions on a Pentium-based cluster,” in Proc. of Neural, Parallel, and Scientific Computations, M. P. Bekakos, G. S. Ladde, N. G. Medhin, and M. Sambandham, eds., (Dynamic Publisher, Atlanta, 2002).

Pertsov, A.M.

C.W. Zemlin, O. Bernus, A. Matiukas, C.J. Hyatt, and A.M. Pertsov, “Extracting Intramural Wavefront Orientation From Optical Upstroke Shapes in Whole Hearts,” Biophys. J. 95, 942–950 (2008).
[Crossref] [PubMed]

Popp, A. K.

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

Rodriguez, B.

M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
[Crossref] [PubMed]

M.J. Bishop, G. Bub, A. Garny, D.J. Gavaghan, and B. Rodriguez, “An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: A Monte Carlo simulation study,” Physica D (to be published).

Rosenbaum, D. S.

S. D. Girouard, K. R. Laurita, and D. S. Rosenbaum, “Unique properties of cardiac action potentials recorded with voltage-sensitive dyes,” J. Cardiovasc. Electrophysiol. 7, 1024–1038 (1996).
[Crossref] [PubMed]

D. S. Rosenbaum and J. Jalife, Optical mapping of Cardiac excitation and arrhythmias, (Armonk, N Y, Futura Publishing Company, Inc.2001).

Roth, B. J.

B. J. Roth, “Photon density measured over a cut surface: implications for optical mapping of the heart,” IEEE Trans. Biomed. Eng. 55, 2102–2104 (2008).
[Crossref] [PubMed]

D. L. Janks and B. J. Roth, “Averaging over depth during optical mapping of unipolar stimulation,” IEEE Trans. Biomed. Eng. 49, 1051–1054 (2002).
[Crossref] [PubMed]

Rudy, Y.

G. M. Faber and Y. Rudy, “Action potential and contractility changes in Na+i overloaded cardiac myocytes: a simulation study,” Biophys. J. 78, 2392–2404 (2000).
[Crossref] [PubMed]

Salama, G.

I. R. Efimov, V. P. Nikolski, and G. Salama, “Optical imaging of the heart,” Circ. Res. 95, 21–33 (2004).
[Crossref] [PubMed]

Splinter, R.

L. Ding, R. Splinter, and S. B. Knisley, “Quantifying spatial localization of optical mapping using Monte Carlo simulations,” IEEE Trans. Biomed. Eng. 48, 1098–1107 (2001).
[Crossref] [PubMed]

Streeter, D.

D. Streeter, Handbook of Physiology, (Bethesda, MD, American Physiological Society, 1979).

Ten Tusscher, K.H.J.W.

K.H.J.W. Ten Tusscher, R. Hren, and A.V. Panfilov, “Organization of ventricular fibrillation in the human heart,” Circ. Res. 100, e87–e101 (2007).
[Crossref] [PubMed]

Trayanova, N.

M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
[Crossref] [PubMed]

Vetter, F. J.

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin, and A. M. Pertsov, “Optical action potential upstroke morphology reveals near-surface transmural propagation direction,” Circ. Res. 97, 277–284 (2005).
[Crossref] [PubMed]

Wang, L.-H.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “CONV — Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[Crossref]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML — Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Weitz, D. A.

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

Wellner, M.

M. Wellner, O. Bernus, S. F. Mironov, and A. M. Pertsov, “Multiplicative optical tomography of cardiac electrical activity,” Phys. Med. Biol. 51, 4429–46 (2006).
[Crossref] [PubMed]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, “Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods,” Phys. Med. Biol. 50, 215–229 (2005).
[Crossref] [PubMed]

O. Bernus, M. Wellner, and A. M. Pertsov, “Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves,” Phys. Rev. E 70, 061913 (2004).

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

Whiteley, J. P.

M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
[Crossref] [PubMed]

Wikswo, J. P.

M. A. Bray and J. P. Wikswo, “Examination of optical depth effects on fluorescence imaging of cardiac propagation,” Biophys. J. 85, 4134–4145 (2003).
[Crossref] [PubMed]

Wilson, B. C.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues — I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref] [PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues — I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref] [PubMed]

Zaitsev, A. V.

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov, and J. Jalife, “Visualizing excitation waves in cardiac muscle using transillumination,” Biophys. J. 80, 516–530 (2001).
[Crossref] [PubMed]

Zaritsky, R.

R. Zaritsky and A. M. Pertsov , “Simulation of 2-D spiral wave interactions on a Pentium-based cluster,” in Proc. of Neural, Parallel, and Scientific Computations, M. P. Bekakos, G. S. Ladde, N. G. Medhin, and M. Sambandham, eds., (Dynamic Publisher, Atlanta, 2002).

Zemlin, C. W.

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin, and A. M. Pertsov, “Optical action potential upstroke morphology reveals near-surface transmural propagation direction,” Circ. Res. 97, 277–284 (2005).
[Crossref] [PubMed]

Zemlin, C.W.

C.W. Zemlin, O. Bernus, A. Matiukas, C.J. Hyatt, and A.M. Pertsov, “Extracting Intramural Wavefront Orientation From Optical Upstroke Shapes in Whole Hearts,” Biophys. J. 95, 942–950 (2008).
[Crossref] [PubMed]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “CONV — Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[Crossref]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML — Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Biophys. J. (6)

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov, and J. Jalife, “Visualizing excitation waves in cardiac muscle using transillumination,” Biophys. J. 80, 516–530 (2001).
[Crossref] [PubMed]

M. A. Bray and J. P. Wikswo, “Examination of optical depth effects on fluorescence imaging of cardiac propagation,” Biophys. J. 85, 4134–4145 (2003).
[Crossref] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, “Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns,” Biophys. J. 85, 2673–2683 (2003).
[Crossref] [PubMed]

C.W. Zemlin, O. Bernus, A. Matiukas, C.J. Hyatt, and A.M. Pertsov, “Extracting Intramural Wavefront Orientation From Optical Upstroke Shapes in Whole Hearts,” Biophys. J. 95, 942–950 (2008).
[Crossref] [PubMed]

M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, “Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping,” Biophys. J. 90, 2938–2945 (2006).
[Crossref] [PubMed]

G. M. Faber and Y. Rudy, “Action potential and contractility changes in Na+i overloaded cardiac myocytes: a simulation study,” Biophys. J. 78, 2392–2404 (2000).
[Crossref] [PubMed]

Chaos (1)

F. Fenton and A. Karma, “Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation,” Chaos 8, 20–47 (1998).
[Crossref]

Circ. Res. (3)

K.H.J.W. Ten Tusscher, R. Hren, and A.V. Panfilov, “Organization of ventricular fibrillation in the human heart,” Circ. Res. 100, e87–e101 (2007).
[Crossref] [PubMed]

I. R. Efimov, V. P. Nikolski, and G. Salama, “Optical imaging of the heart,” Circ. Res. 95, 21–33 (2004).
[Crossref] [PubMed]

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin, and A. M. Pertsov, “Optical action potential upstroke morphology reveals near-surface transmural propagation direction,” Circ. Res. 97, 277–284 (2005).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (2)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML — Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “CONV — Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[Crossref]

IEEE Trans. Biomed. Eng. (4)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues — I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref] [PubMed]

B. J. Roth, “Photon density measured over a cut surface: implications for optical mapping of the heart,” IEEE Trans. Biomed. Eng. 55, 2102–2104 (2008).
[Crossref] [PubMed]

L. Ding, R. Splinter, and S. B. Knisley, “Quantifying spatial localization of optical mapping using Monte Carlo simulations,” IEEE Trans. Biomed. Eng. 48, 1098–1107 (2001).
[Crossref] [PubMed]

D. L. Janks and B. J. Roth, “Averaging over depth during optical mapping of unipolar stimulation,” IEEE Trans. Biomed. Eng. 49, 1051–1054 (2002).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

V. D. Khait, O. Bernus, S. Mironov, and A. M. Pertsov, “Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging,” J. Biomed. Opt. 11, 34007 (2006).
[Crossref] [PubMed]

O. Bernus, K. S. Mukund, and A. M. Pertsov, “Detection of intramyocardial scroll waves using absorptive transillumination imaging,” J. Biomed. Opt. 12, 14035 (2007).
[Crossref]

J. Cardiovasc. Electrophysiol. (1)

S. D. Girouard, K. R. Laurita, and D. S. Rosenbaum, “Unique properties of cardiac action potentials recorded with voltage-sensitive dyes,” J. Cardiovasc. Electrophysiol. 7, 1024–1038 (1996).
[Crossref] [PubMed]

Nature (1)

R. A. Gray, A. M. Pertsov, and J. Jalife, “Spatial and temporal organization during cardiac fibrillation,” Nature 392, 75–78 (1998).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (2)

M. Wellner, O. Bernus, S. F. Mironov, and A. M. Pertsov, “Multiplicative optical tomography of cardiac electrical activity,” Phys. Med. Biol. 51, 4429–46 (2006).
[Crossref] [PubMed]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, “Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods,” Phys. Med. Biol. 50, 215–229 (2005).
[Crossref] [PubMed]

Phys. Rev. (1)

O. Bernus, M. Wellner, and A. M. Pertsov, “Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves,” Phys. Rev. E 70, 061913 (2004).

Other (4)

D. S. Rosenbaum and J. Jalife, Optical mapping of Cardiac excitation and arrhythmias, (Armonk, N Y, Futura Publishing Company, Inc.2001).

D. Streeter, Handbook of Physiology, (Bethesda, MD, American Physiological Society, 1979).

M.J. Bishop, G. Bub, A. Garny, D.J. Gavaghan, and B. Rodriguez, “An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: A Monte Carlo simulation study,” Physica D (to be published).

R. Zaritsky and A. M. Pertsov , “Simulation of 2-D spiral wave interactions on a Pentium-based cluster,” in Proc. of Neural, Parallel, and Scientific Computations, M. P. Bekakos, G. S. Ladde, N. G. Medhin, and M. Sambandham, eds., (Dynamic Publisher, Atlanta, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

A schematic representation of a typical cardiac epi-fluorescence experiment in isolated guinea pig hearts. In this setup the epicardial surface of the heart is uniformly illuminated by a light source (e.g. a tungsten-halogen lamp), whose light has been bandpass filtered at the appropriate wavelengths for excitation of the VSD. Fluorescence optical signals of cardiac electrical activity are then recorded using a CCD camera from the same epicardial area at the appropriate wavelength. A typical optical action potential as recorded from a single image pixel is shown on the right.

Fig. 2.
Fig. 2.

Subsurface wave front orientation and VF *. The green area caricaturizes the subsurface volume from which contributions are made to the optical signal in the pixel of interest (dashed arrows). Panel A shows isochrones (white lines).of a wave front propagating towards the epicardium, whereas Panel B shows the opposite situation. The optical signal recorded from the pixel of interest on the epicardial surface is shown on top, as well as VF * (black circle).

Fig. 3.
Fig. 3.

Excitation fluence and intramural optical weight. Panels A and B show the intramural excitation fluence Φe for two different tissue thicknesses (2.5 and 5mm respectively). The data was normalized to the photon density on the epicardial surface (z=0). Panel C and D show the relative contribution of an intramural layer at depth z to the total fluorescence for a uniform source distribution for two different tissue thicknesses (2.5 and 5mm respectively).

Fig. 4.
Fig. 4.

Subsurface optical integration volume for the different models (see text for details).

Fig. 5.
Fig. 5.

Optical activation maps and optical upstrokes. The three left panels show simulated activation maps obtained using the different photon transport models. An experimental activation map is shown on the right, as well as a comparison of optical upstrokes obtained from the pixel indicated by an asterisk * in the activation maps.

Fig. 6.
Fig. 6.

Differences in optical upstroke durations in the various models. The left panels show color-coded maps of the differences in optical upstroke durations in each pixel between the diffusion models and the MC model. The tracings on the right compare the optical upstrokes of the three models recorded from two different areas (a and b).

Fig. 7.
Fig. 7.

VF * and optically weighted subsurface angle ϕF . Panel A shows VF * maps obtained after epicardial point stimulation in the 5mm thick slab. Panel B shows the optically averaged subsurface wave front orientation ϕF with respect to the epicardial surface. The electrical Vm * and ϕE maps are shown for comparison. Panel C shows an experimental VF * map and Panel D shows simulated 3D isochronal surfaces following an epicardial point stimulus.

Fig. 8.
Fig. 8.

Linear regression analysis of VF * vs ϕF for the different photon transport models. Each dot in the scatter plot indicates the results obtained for a single pixel and the red line shows the linear fit to the data.

Fig. 9.
Fig. 9.

Reconstructing subsurface wave front orientation from VF * maps for epicardial pacing (top) and sinus rhythm (bottom). For each row, the VF * map is shown on the left and the reconstructions using the different models are shown on the right.

Tables (4)

Tables Icon

Table 1. Optical parameters for excitation (488 nm) and emission (669 nm).

Tables Icon

Table 2. Optical upstroke durations (mean ± SD ms) for various tissue thicknesses L.

Tables Icon

Table 3 Maximal and minimal values of VF* for the different models and tissue thicknesses.

Tables Icon

Table 4. Linear regression analysis of subsurface angle ϕF vs VF * in a slab of 5 mm thickness. ϕF =A+B·VF * and R is the correlation coefficient

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V F ( x , y , t ) = v β · V m ( r , t ) · Φ e ( r ) · Γ ( z , ρ ) · d r
t V m ( r , t ) = I ion C m + · D E V m ( r , t )
Φ e ( z ) = Φ 0 sinh ( L + d e z δ e )
Γ ( z , ρ ) = Γ 0 ( z + d , ρ ) Γ 0 ( 2 L + 3 d z , ρ ) ,
Γ 0 ( ς , ρ ) = ς 2 π ( ς 2 + ρ 2 ) ( 1 δ + 1 ς 2 + ρ 2 ) exp ( ς 2 + ρ 2 δ ) .
ϕ F ( x , y , t ) = v β · ϕ E ( r , t ) · Φ e ( r ) · Γ ( z , ρ ) · d r

Metrics