Abstract

Corneal birefringence affects polarization-sensitive optical measurements of the eye. Recent literature supports the idea that corneal birefringence is biaxial, although with some disagreement among reports and without considering corneas with very low values of central retardance. This study measured corneal retardation in eyes with a wide range of central corneal retardance by means of scanning laser polarimetry (GDx-VCC�?�, Carl Zeiss Meditec, Inc.), which computes the retardance and slow axis of the cornea from images of the bow tie pattern formed by the radial birefringence of the macula. Measurements were obtained at many points on the cornea by translating the instrument. Data were compared to calculations of the retardation produced by a curved biaxial material between two spherical surfaces. Most corneas showed one or two small areas of zero retardance where the refracted ray within the cornea aligned with an optical axis of the material. The retardation patterns in these corneas could be mimicked, but not accurately described, by the biaxial model. Two corneas with large areas of low retardance more closely resembled a uniaxial model. We conclude that the cornea, in general, behaves as a biaxial material with its fastest axis perpendicular to its surface. Some locations in a few corneas can be uniaxial with the optical axis perpendicular to the surface. Importantly, corneal birefringence varies greatly among people and, within a single cornea, significantly with position.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Vis. Sci. 43, 82-86 (2002).
  2. G. J. van Blokland and S. C. Verhelst, "Corneal polarization in the living human eye explained with a biaxial model," J. Opt. Soc. Am. A 4, 82-90 (1987).
  3. E. Götzinger, M. Pircher, M. Sticker, A. F. Fecher and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
    [CrossRef]
  4. R. A. Farrell, D. Rouseff and R. L. McCally, "Propagation of polarized light through two- and three-layer anisotropic stacks," J. Opt. Soc. Am. A 22, 1981-1992 (2005).
    [CrossRef]
  5. R. A. Bone and G. Draper, "Optical anisotropy of the human cornea determined with a polarizing microscope," Appl. Opt. 46, 8351-8357 (2007).
    [CrossRef]
  6. R. N. Weinreb, C. Bowd, D. S. Greenfield and L. M. Zangwill, "Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry," Arch. Ophthalmol. 120, 901-906 (2002).
  7. Q. Zhou and R. N. Weinreb, "Individualized compensation of anterior segment birefringence during scanning laser polarimetry," Invest. Ophthalmol. Vis. Sci. 43, 2221-2228 (2002).
  8. N. J. Reus, Q. Zhou, H. G. Lemij, "Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation," Invest. Ophthalmol. Vis. Sci. 47, 3870-3877 (2006).
    [CrossRef]
  9. M. Sehi, S. Ume, D. S. Greenfield, and Advanced Imaging in Glaucoma Study Group, "Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes," Invest. Ophthalmol. Vis. Sci. 48, 2099-2104 (2007).
    [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics, Seventh Edition (Cambridge University Press, 1999), Ch. XV, "Optics of crystals".
  11. M. J. Hogan, J. A. Alvarado and J. E. Weddell, Histology of the Human Eye, An Atlas and Textbook (W. B. Saunders Co., Philadelphia, 1971).
  12. R. W. Knighton, X.-R. Huang, and D. S. Greenfield, "Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment," Invest. Ophthalmol. Vis. Sci. 43, 383-392 (2002).
  13. R. W. Knighton, "Spectral dependence of corneal birefringence at visible wavelengths," Invest. Ophthalmol. Vis. Sci.  43, E-Abstract 152 (2002).
  14. C. C. Ferguson, "Intersections of ellipsoids and planes of arbitrary orientation and position," Math. Geology 11, 329-336 (1979).
    [CrossRef]
  15. G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Ed. (John Wiley & Sons, New York, 1982), Chap. 2.
  16. C. Boote, S. Hayes, M. Abahussin and K. M. Meek, "Mapping collagen organization in the human cornea: left and right eyes are structurally distinct," Invest. Ophthalmol. Vis. Sci. 47, 901-908 (2006).
    [CrossRef]
  17. G. P. Misson, "Circular polarization biomicroscope: a method for determining human corneal stromal lamellar organization in vivo," Ophthal. Physiol. Opt. 27, 256-264 (2007).
    [CrossRef]

2007

M. Sehi, S. Ume, D. S. Greenfield, and Advanced Imaging in Glaucoma Study Group, "Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes," Invest. Ophthalmol. Vis. Sci. 48, 2099-2104 (2007).
[CrossRef]

G. P. Misson, "Circular polarization biomicroscope: a method for determining human corneal stromal lamellar organization in vivo," Ophthal. Physiol. Opt. 27, 256-264 (2007).
[CrossRef]

R. A. Bone and G. Draper, "Optical anisotropy of the human cornea determined with a polarizing microscope," Appl. Opt. 46, 8351-8357 (2007).
[CrossRef]

2006

N. J. Reus, Q. Zhou, H. G. Lemij, "Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation," Invest. Ophthalmol. Vis. Sci. 47, 3870-3877 (2006).
[CrossRef]

C. Boote, S. Hayes, M. Abahussin and K. M. Meek, "Mapping collagen organization in the human cornea: left and right eyes are structurally distinct," Invest. Ophthalmol. Vis. Sci. 47, 901-908 (2006).
[CrossRef]

2005

2004

E. Götzinger, M. Pircher, M. Sticker, A. F. Fecher and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef]

2002

R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Vis. Sci. 43, 82-86 (2002).

R. W. Knighton, X.-R. Huang, and D. S. Greenfield, "Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment," Invest. Ophthalmol. Vis. Sci. 43, 383-392 (2002).

R. N. Weinreb, C. Bowd, D. S. Greenfield and L. M. Zangwill, "Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry," Arch. Ophthalmol. 120, 901-906 (2002).

Q. Zhou and R. N. Weinreb, "Individualized compensation of anterior segment birefringence during scanning laser polarimetry," Invest. Ophthalmol. Vis. Sci. 43, 2221-2228 (2002).

1987

1979

C. C. Ferguson, "Intersections of ellipsoids and planes of arbitrary orientation and position," Math. Geology 11, 329-336 (1979).
[CrossRef]

Abahussin, M.

C. Boote, S. Hayes, M. Abahussin and K. M. Meek, "Mapping collagen organization in the human cornea: left and right eyes are structurally distinct," Invest. Ophthalmol. Vis. Sci. 47, 901-908 (2006).
[CrossRef]

Advanced Imaging in Glaucoma Study Group, D. S.

M. Sehi, S. Ume, D. S. Greenfield, and Advanced Imaging in Glaucoma Study Group, "Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes," Invest. Ophthalmol. Vis. Sci. 48, 2099-2104 (2007).
[CrossRef]

Bone, R. A.

Boote, C.

C. Boote, S. Hayes, M. Abahussin and K. M. Meek, "Mapping collagen organization in the human cornea: left and right eyes are structurally distinct," Invest. Ophthalmol. Vis. Sci. 47, 901-908 (2006).
[CrossRef]

Bowd, C.

R. N. Weinreb, C. Bowd, D. S. Greenfield and L. M. Zangwill, "Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry," Arch. Ophthalmol. 120, 901-906 (2002).

Draper, G.

Farrell, R. A.

Fecher, A. F.

E. Götzinger, M. Pircher, M. Sticker, A. F. Fecher and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef]

Ferguson, C. C.

C. C. Ferguson, "Intersections of ellipsoids and planes of arbitrary orientation and position," Math. Geology 11, 329-336 (1979).
[CrossRef]

Götzinger, E.

E. Götzinger, M. Pircher, M. Sticker, A. F. Fecher and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef]

Greenfield, D. S.

M. Sehi, S. Ume, D. S. Greenfield, and Advanced Imaging in Glaucoma Study Group, "Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes," Invest. Ophthalmol. Vis. Sci. 48, 2099-2104 (2007).
[CrossRef]

R. W. Knighton, X.-R. Huang, and D. S. Greenfield, "Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment," Invest. Ophthalmol. Vis. Sci. 43, 383-392 (2002).

R. N. Weinreb, C. Bowd, D. S. Greenfield and L. M. Zangwill, "Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry," Arch. Ophthalmol. 120, 901-906 (2002).

Hayes, S.

C. Boote, S. Hayes, M. Abahussin and K. M. Meek, "Mapping collagen organization in the human cornea: left and right eyes are structurally distinct," Invest. Ophthalmol. Vis. Sci. 47, 901-908 (2006).
[CrossRef]

Hitzenberger, C. K.

E. Götzinger, M. Pircher, M. Sticker, A. F. Fecher and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef]

Huang, X.-R.

R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Vis. Sci. 43, 82-86 (2002).

R. W. Knighton, X.-R. Huang, and D. S. Greenfield, "Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment," Invest. Ophthalmol. Vis. Sci. 43, 383-392 (2002).

Knighton, R. W.

R. W. Knighton, X.-R. Huang, and D. S. Greenfield, "Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment," Invest. Ophthalmol. Vis. Sci. 43, 383-392 (2002).

R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Vis. Sci. 43, 82-86 (2002).

Lemij, H. G.

N. J. Reus, Q. Zhou, H. G. Lemij, "Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation," Invest. Ophthalmol. Vis. Sci. 47, 3870-3877 (2006).
[CrossRef]

McCally, R. L.

Meek, K. M.

C. Boote, S. Hayes, M. Abahussin and K. M. Meek, "Mapping collagen organization in the human cornea: left and right eyes are structurally distinct," Invest. Ophthalmol. Vis. Sci. 47, 901-908 (2006).
[CrossRef]

Misson, G. P.

G. P. Misson, "Circular polarization biomicroscope: a method for determining human corneal stromal lamellar organization in vivo," Ophthal. Physiol. Opt. 27, 256-264 (2007).
[CrossRef]

Pircher, M.

E. Götzinger, M. Pircher, M. Sticker, A. F. Fecher and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef]

Reus, N. J.

N. J. Reus, Q. Zhou, H. G. Lemij, "Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation," Invest. Ophthalmol. Vis. Sci. 47, 3870-3877 (2006).
[CrossRef]

Rouseff, D.

Sehi, M.

M. Sehi, S. Ume, D. S. Greenfield, and Advanced Imaging in Glaucoma Study Group, "Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes," Invest. Ophthalmol. Vis. Sci. 48, 2099-2104 (2007).
[CrossRef]

Sticker, M.

E. Götzinger, M. Pircher, M. Sticker, A. F. Fecher and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef]

Ume, S.

M. Sehi, S. Ume, D. S. Greenfield, and Advanced Imaging in Glaucoma Study Group, "Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes," Invest. Ophthalmol. Vis. Sci. 48, 2099-2104 (2007).
[CrossRef]

van Blokland, G. J.

Verhelst, S. C.

Weinreb, R. N.

R. N. Weinreb, C. Bowd, D. S. Greenfield and L. M. Zangwill, "Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry," Arch. Ophthalmol. 120, 901-906 (2002).

Q. Zhou and R. N. Weinreb, "Individualized compensation of anterior segment birefringence during scanning laser polarimetry," Invest. Ophthalmol. Vis. Sci. 43, 2221-2228 (2002).

Zangwill, L. M.

R. N. Weinreb, C. Bowd, D. S. Greenfield and L. M. Zangwill, "Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry," Arch. Ophthalmol. 120, 901-906 (2002).

Zhou, Q.

N. J. Reus, Q. Zhou, H. G. Lemij, "Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation," Invest. Ophthalmol. Vis. Sci. 47, 3870-3877 (2006).
[CrossRef]

Q. Zhou and R. N. Weinreb, "Individualized compensation of anterior segment birefringence during scanning laser polarimetry," Invest. Ophthalmol. Vis. Sci. 43, 2221-2228 (2002).

Appl. Opt.

Arch. Ophthalmol.

R. N. Weinreb, C. Bowd, D. S. Greenfield and L. M. Zangwill, "Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry," Arch. Ophthalmol. 120, 901-906 (2002).

Invest. Ophthalmol. Vis. Sci.

Q. Zhou and R. N. Weinreb, "Individualized compensation of anterior segment birefringence during scanning laser polarimetry," Invest. Ophthalmol. Vis. Sci. 43, 2221-2228 (2002).

N. J. Reus, Q. Zhou, H. G. Lemij, "Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation," Invest. Ophthalmol. Vis. Sci. 47, 3870-3877 (2006).
[CrossRef]

M. Sehi, S. Ume, D. S. Greenfield, and Advanced Imaging in Glaucoma Study Group, "Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes," Invest. Ophthalmol. Vis. Sci. 48, 2099-2104 (2007).
[CrossRef]

R. W. Knighton, X.-R. Huang, and D. S. Greenfield, "Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment," Invest. Ophthalmol. Vis. Sci. 43, 383-392 (2002).

C. Boote, S. Hayes, M. Abahussin and K. M. Meek, "Mapping collagen organization in the human cornea: left and right eyes are structurally distinct," Invest. Ophthalmol. Vis. Sci. 47, 901-908 (2006).
[CrossRef]

R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Vis. Sci. 43, 82-86 (2002).

J. Biomed. Opt.

E. Götzinger, M. Pircher, M. Sticker, A. F. Fecher and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Math. Geology

C. C. Ferguson, "Intersections of ellipsoids and planes of arbitrary orientation and position," Math. Geology 11, 329-336 (1979).
[CrossRef]

Ophthal. Physiol. Opt.

G. P. Misson, "Circular polarization biomicroscope: a method for determining human corneal stromal lamellar organization in vivo," Ophthal. Physiol. Opt. 27, 256-264 (2007).
[CrossRef]

Other

G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Ed. (John Wiley & Sons, New York, 1982), Chap. 2.

R. W. Knighton, "Spectral dependence of corneal birefringence at visible wavelengths," Invest. Ophthalmol. Vis. Sci.  43, E-Abstract 152 (2002).

M. Born and E. Wolf, Principles of Optics, Seventh Edition (Cambridge University Press, 1999), Ch. XV, "Optics of crystals".

M. J. Hogan, J. A. Alvarado and J. E. Weddell, Histology of the Human Eye, An Atlas and Textbook (W. B. Saunders Co., Philadelphia, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics