Abstract

We show that our recently reported microwave photonic jet technique for detection of deeply subwavelength pits in a metal substrate can be extended to optical wavelengths for purposes of high-density data storage. Three-dimensional finite-difference time-domain computational solutions of Maxwell’s equations are used to optimize the photonic nanojet and pit configuration to account for the Drude dispersion of an aluminum substrate in the spectral range near λ=400 nm. Our results show that nanojet-illuminated pits having lateral dimensions of only 50 nm×80 nm yield a contrast ratio 27 dB greater than previously reported using a lens system for pits of similar area. Such pits are much smaller than BluRay™ features. The high detection contrast afforded by the photonic nanojet could potentially yield significant increases in data density and throughput relative to current commercial optical data-storage systems while retaining the basic geometry of the storage medium.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. M. Sales, "Smallest focal spot," Phys. Rev. Lett. 81, 3844-3847 (1998).
    [CrossRef]
  2. C. J. R. Sheppard, "Fundamentals of super resolution," Micron 38, 165-169 (2007).
    [CrossRef]
  3. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  4. C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007).
    [CrossRef]
  5. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
    [CrossRef] [PubMed]
  6. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
    [CrossRef] [PubMed]
  7. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
    [CrossRef] [PubMed]
  8. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett. 30, 2641-2643 (2005).
    [CrossRef] [PubMed]
  9. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005).
    [CrossRef]
  10. Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31,196-198, (2006).
  11. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
    [CrossRef]
  12. A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007).
    [CrossRef] [PubMed]
  13. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007).
    [CrossRef] [PubMed]
  14. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
    [CrossRef]
  15. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
    [CrossRef] [PubMed]
  16. M. Gerlach, Y. P. Rakovich, and J. F. Donegan, "Nanojets and directional emission in symmetric photonic molecules," Opt. Express 15, 17343-17350 (2007).
    [CrossRef] [PubMed]
  17. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008).
    [CrossRef] [PubMed]
  18. S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
    [CrossRef]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, Boston, MA 2005).
  20. S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microw. Wirel. Compon. Lett. 18, 4-6 (2008).
    [CrossRef]
  21. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994).
    [CrossRef]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099 (1983).
    [CrossRef] [PubMed]
  23. J. A. C. Veerman, A. J. H. Wachters, A. M. van der Lee, and H. P. Urbach, "Rigorous 3D calculation of effects of pit structure in TwoDOS systems," Opt. Express 15, 2075-2097 (2007).
    [CrossRef] [PubMed]
  24. Online: http://www.optotronics.com/b-lithium-ion.php
  25. Online: http://statusreports.atp.nist.gov/reports/94-01-0115.htm

2008 (4)

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008).
[CrossRef] [PubMed]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microw. Wirel. Compon. Lett. 18, 4-6 (2008).
[CrossRef]

2007 (8)

A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007).
[CrossRef] [PubMed]

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007).
[CrossRef] [PubMed]

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

M. Gerlach, Y. P. Rakovich, and J. F. Donegan, "Nanojets and directional emission in symmetric photonic molecules," Opt. Express 15, 17343-17350 (2007).
[CrossRef] [PubMed]

C. J. R. Sheppard, "Fundamentals of super resolution," Micron 38, 165-169 (2007).
[CrossRef]

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007).
[CrossRef]

J. A. C. Veerman, A. J. H. Wachters, A. M. van der Lee, and H. P. Urbach, "Rigorous 3D calculation of effects of pit structure in TwoDOS systems," Opt. Express 15, 2075-2097 (2007).
[CrossRef] [PubMed]

2006 (2)

Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31,196-198, (2006).

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

2005 (3)

2004 (1)

1998 (1)

T. R. M. Sales, "Smallest focal spot," Phys. Rev. Lett. 81, 3844-3847 (1998).
[CrossRef]

1994 (2)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994).
[CrossRef]

1983 (1)

Alexander, R. W.

Astratov, V. N.

Backman, V.

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microw. Wirel. Compon. Lett. 18, 4-6 (2008).
[CrossRef]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31,196-198, (2006).

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994).
[CrossRef]

Bonod, N.

Bruls, D. M.

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007).
[CrossRef]

Challener, W. A.

Chen, Z.

Chen, Z. G.

Crégut, O.

Devilez, A.

Donegan, J. F.

Egner, A.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
[CrossRef] [PubMed]

Engelhardt, J.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
[CrossRef] [PubMed]

Ferrand, P.

Gerlach, M.

Haacke, S.

Heifetz, A.

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Hell, S. W.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
[CrossRef] [PubMed]

Hirlimann, C.

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Itagi, A. V.

Jakobs, S.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
[CrossRef] [PubMed]

Kapitonov, A. M.

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Kong, S.-C.

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microw. Wirel. Compon. Lett. 18, 4-6 (2008).
[CrossRef]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

Lecler, S.

Lecong, N.

Li, X.

Long, L. L.

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Meyrueis, P.

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Ordal, M. A.

Pianta, M.

Popov, E.

Rakovich, Y. P.

Rehspringer, J.-L.

Rigneault, H.

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Sahakian, A. V.

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Sales, T. R. M.

T. R. M. Sales, "Smallest focal spot," Phys. Rev. Lett. 81, 3844-3847 (1998).
[CrossRef]

Schmidt, R.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
[CrossRef] [PubMed]

Sheppard, C. J. R.

C. J. R. Sheppard, "Fundamentals of super resolution," Micron 38, 165-169 (2007).
[CrossRef]

Simpson, J. J.

Stout, B.

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Taflove, A.

Takakura, Y.

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Urbach, H. P.

van den Eerenbeemd, J. M. A.

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007).
[CrossRef]

van der Lee, A. M.

Veerman, J. A. C.

Verschuren, C. A.

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007).
[CrossRef]

Wachters, A. J. H.

Ward, C. A.

Wenger, J.

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Wurm, C. A.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
[CrossRef] [PubMed]

Yin, B.

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007).
[CrossRef]

Zijp, F.

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microw. Wirel. Compon. Lett. 18, 4-6 (2008).
[CrossRef]

J. Comp. Phys. (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys (1)

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007).
[CrossRef]

Micron (1)

C. J. R. Sheppard, "Fundamentals of super resolution," Micron 38, 165-169 (2007).
[CrossRef]

Nanotechnology (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Nat. Methods (1)

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008).
[CrossRef] [PubMed]

Opt. Express (7)

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
[CrossRef] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
[CrossRef] [PubMed]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

M. Gerlach, Y. P. Rakovich, and J. F. Donegan, "Nanojets and directional emission in symmetric photonic molecules," Opt. Express 15, 17343-17350 (2007).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008).
[CrossRef] [PubMed]

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007).
[CrossRef] [PubMed]

J. A. C. Veerman, A. J. H. Wachters, A. M. van der Lee, and H. P. Urbach, "Rigorous 3D calculation of effects of pit structure in TwoDOS systems," Opt. Express 15, 2075-2097 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

T. R. M. Sales, "Smallest focal spot," Phys. Rev. Lett. 81, 3844-3847 (1998).
[CrossRef]

Other (3)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, Boston, MA 2005).

Online: http://www.optotronics.com/b-lithium-ion.php

Online: http://statusreports.atp.nist.gov/reports/94-01-0115.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-section (not to scale) of the proposed optical data-storage geometry. The microsphere diameter is 2 µm. a=160 nm, b=480 nm, c=40 nm, d=360 nm, e=160 nm, f=200 nm.

Fig. 2.
Fig. 2.

FDTD-computed normalized optical intensity (power density) relative to the incident illumination for the isolated 2-µm diameter microsphere at λ=393.9 nm. The cubic grid-cell size is 10 nm. (a) Photonic nanojet observed in the x-z longitudinal cut-plane. (b) 3-D plot in the x-y transverse plane located 600 nm from the back surface of the microsphere. (c) 2-D plot corresponding to (b).

Fig. 3.
Fig. 3.

FDTD-computed far-field no-pit/pit power ratio as a function of the nanojet wavelength and the pit depth for a single rectangular 50 nm×80 nm (lateral cross-section) pit in the complete optical data-storage model of Fig. 1.

Fig. 4.
Fig. 4.

FDTD-computed far-field no-pit/pit power ratio vs. pit depth for a 50 nm×80 nm lateral cross-section pit at the fixed wavelength λ=393.9 nm. The monotonic nature of this characteristic over a wide range of power ratios and ~90 nm of pit-depth variation suggests a pit-depth coding scheme wherein multiple data levels are encoded at the location of a single pit according to its depth.

Fig. 5.
Fig. 5.

FDTD-computed far-field no-pits/pits power ratio vs. pit-to-pit separation for a pair of 50 nm×80 nm rectangular pits, each having the optimum pit depth of 30 nm. The wavelength is fixed at λ=393.9 nm. The two pits are assumed to be positioned7lengthwise along the y-direction centered within the nanojet’s footprint shown in Fig. 2(c). The monotonic nature of this characteristic over a wide range of power ratios and ~300 nm of pit-to-pit separation suggests a scheme wherein multiple data levels are encoded at the location of a single pit-pair within the nanojet footprint according to the pit-to-pit separation distance.

Metrics