Abstract

We have demonstrated the bandwidth control of a Ti-diffused periodically poled LiNbO3 (Ti:PPLN) Sﬞolc filter by a temperature-gradient-control technique. Up to 2.8 nm of filtering bandwidth was achieved with a simple temperature-gradient-control technique in a 78-mm-long of Ti:PPLN waveguide, which has a 0.2 nm filtering bandwidth at an uniform temperature. We have also analyzed the experimental results with the theoretical calculation which is derived from the codirectional coupled mode equations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jechow, M. Schedel, S. Stry, J. Sacher, and R. Menzel, “Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm,” Opt. Lett. 32, 3035–3037 (2007).
    [CrossRef] [PubMed]
  2. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5 µm band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupled structures,” Opt. Lett. 23, 1004–1006 (1998).
    [CrossRef]
  3. Y. L. Lee, C. Jung, Y.-C. Noh, M. Y. Park, C. C. Byeon, D.-K. Ko, and J. Lee, “Channel Selective Wavelength Conversion and Tuning in periodic poled Ti:PPLN Channel Waveguides,” Opt. Express 12, 2649–2655 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649.
    [CrossRef] [PubMed]
  4. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
    [CrossRef] [PubMed]
  5. T. Suhara and H. Ishizuki, “Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
    [CrossRef]
  6. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
    [CrossRef]
  7. K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
    [CrossRef]
  8. Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
    [CrossRef] [PubMed]
  9. M. Yamada, N. Noda, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–346 (1993).
    [CrossRef]
  10. Y.-Q. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 1035–1037 (2001).
    [CrossRef]
  11. J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
    [CrossRef]
  12. I. Sﬞolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621–625 (1965).
    [CrossRef]
  13. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
    [CrossRef]
  14. Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
    [CrossRef]
  15. J. Shi, J. Wang, L. Chen, X. Chen, and Y. Xia, “Tunable Sﬞolc-type filter in periodically poled LiNbO3 by UV-light illumination,” Opt. Express 14, 6279–6284 (2006).
    [CrossRef] [PubMed]
  16. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
    [CrossRef]
  17. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
    [CrossRef] [PubMed]
  18. J. Wang, J. Shi, Z. Zhou, and X. Chen, “Tunable multi-wavelength filter in periodically poled LiNbO3 by a local-temperature-control technique,” Opt. Express 15, 1561–1566 (2007).
    [CrossRef] [PubMed]
  19. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11, 2813–2819 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813.
    [CrossRef] [PubMed]
  20. A. Yariv and P. Yeh, Optical waves in crystals, (Wiley, New York, 1984), 189–194.
  21. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
  22. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
    [CrossRef] [PubMed]
  23. E. Rabia and A. Arie, “Duty cycle dependence of a periodically poled LiNbO3-based electro-optic Solc filter,” Appl. Opt. 45, 540–545 (2006).
    [CrossRef] [PubMed]
  24. L. Chen, J. Shi, X. Chen, and Y. Xia, “Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter,” Appl. Phys. Lett. 88, 121118-121118-3, (2006).
    [CrossRef]
  25. T. Suhara and M. Fujimura, “Theoretical Analysis of Waveguide Second-Harmonic Generation Phase Matched with Uniform and Chirped Gratings,” IEEE Quantum Electron. 26, 1265–1275, (1990).
    [CrossRef]
  26. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994).
    [CrossRef]
  27. S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8, 797–804 (1991).
  28. A. Tehranchi and R. Kashyap, “Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Broadband Frequency Converters Based on Second-Harmonic Generation,” J. Lighw. Technol. 26, 343–349 (2008).
    [CrossRef]
  29. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 µm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129–1131 (2007).
    [CrossRef] [PubMed]
  30. E. Strake, G. P. Bava, and I. Montrosset, “Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparison with the Scalar Finite-Element Method,” J. Lightwav. Technol. 6, 1126–1135 (1988).
    [CrossRef]
  31. Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
    [CrossRef]

2008 (2)

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

A. Tehranchi and R. Kashyap, “Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Broadband Frequency Converters Based on Second-Harmonic Generation,” J. Lighw. Technol. 26, 343–349 (2008).
[CrossRef]

2007 (5)

2006 (4)

2005 (1)

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

2004 (1)

2003 (5)

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11, 2813–2819 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813.
[CrossRef] [PubMed]

J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[CrossRef] [PubMed]

Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
[CrossRef]

2001 (2)

T. Suhara and H. Ishizuki, “Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
[CrossRef]

Y.-Q. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 1035–1037 (2001).
[CrossRef]

2000 (1)

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

1998 (1)

1997 (1)

1994 (1)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994).
[CrossRef]

1993 (1)

M. Yamada, N. Noda, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–346 (1993).
[CrossRef]

1991 (1)

S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8, 797–804 (1991).

1990 (1)

T. Suhara and M. Fujimura, “Theoretical Analysis of Waveguide Second-Harmonic Generation Phase Matched with Uniform and Chirped Gratings,” IEEE Quantum Electron. 26, 1265–1275, (1990).
[CrossRef]

1988 (1)

E. Strake, G. P. Bava, and I. Montrosset, “Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparison with the Scalar Finite-Element Method,” J. Lightwav. Technol. 6, 1126–1135 (1988).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).

1965 (1)

Arbore, M. A.

Arie, A.

Arvidsson, G.

S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8, 797–804 (1991).

Asobe, M.

Bava, G. P.

E. Strake, G. P. Bava, and I. Montrosset, “Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparison with the Scalar Finite-Element Method,” J. Lightwav. Technol. 6, 1126–1135 (1988).
[CrossRef]

Byeon, C. C.

Chen, L.

J. Shi, J. Wang, L. Chen, X. Chen, and Y. Xia, “Tunable Sﬞolc-type filter in periodically poled LiNbO3 by UV-light illumination,” Opt. Express 14, 6279–6284 (2006).
[CrossRef] [PubMed]

L. Chen, J. Shi, X. Chen, and Y. Xia, “Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter,” Appl. Phys. Lett. 88, 121118-121118-3, (2006).
[CrossRef]

Chen, X.

J. Wang, J. Shi, Z. Zhou, and X. Chen, “Tunable multi-wavelength filter in periodically poled LiNbO3 by a local-temperature-control technique,” Opt. Express 15, 1561–1566 (2007).
[CrossRef] [PubMed]

J. Shi, J. Wang, L. Chen, X. Chen, and Y. Xia, “Tunable Sﬞolc-type filter in periodically poled LiNbO3 by UV-light illumination,” Opt. Express 14, 6279–6284 (2006).
[CrossRef] [PubMed]

L. Chen, J. Shi, X. Chen, and Y. Xia, “Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter,” Appl. Phys. Lett. 88, 121118-121118-3, (2006).
[CrossRef]

J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
[CrossRef]

Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[CrossRef] [PubMed]

Chen, Y.

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[CrossRef] [PubMed]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[CrossRef] [PubMed]

Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
[CrossRef]

J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
[CrossRef]

J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
[CrossRef]

Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
[CrossRef]

Chou, M. H.

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5 µm band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupled structures,” Opt. Lett. 23, 1004–1006 (1998).
[CrossRef]

Eom, T. J.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Fejer, M. M.

Fujimura, M.

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

T. Suhara and M. Fujimura, “Theoretical Analysis of Waveguide Second-Harmonic Generation Phase Matched with Uniform and Chirped Gratings,” IEEE Quantum Electron. 26, 1265–1275, (1990).
[CrossRef]

Grundkoetter, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

Hauden, J.

Helmfrid, S.

S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8, 797–804 (1991).

Ishizuki, H.

T. Suhara and H. Ishizuki, “Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
[CrossRef]

Jechow, A.

Jung, C.

Kashyap, R.

A. Tehranchi and R. Kashyap, “Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Broadband Frequency Converters Based on Second-Harmonic Generation,” J. Lighw. Technol. 26, 343–349 (2008).
[CrossRef]

Kato, M.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994).
[CrossRef]

Kee, C.-S.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Ko, D.-K.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Y. L. Lee, C. Jung, Y.-C. Noh, M. Y. Park, C. C. Byeon, D.-K. Ko, and J. Lee, “Channel Selective Wavelength Conversion and Tuning in periodic poled Ti:PPLN Channel Waveguides,” Opt. Express 12, 2649–2655 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649.
[CrossRef] [PubMed]

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11, 2813–2819 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813.
[CrossRef] [PubMed]

Ko, K.-K.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

Lee, J.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

Y. L. Lee, C. Jung, Y.-C. Noh, M. Y. Park, C. C. Byeon, D.-K. Ko, and J. Lee, “Channel Selective Wavelength Conversion and Tuning in periodic poled Ti:PPLN Channel Waveguides,” Opt. Express 12, 2649–2655 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649.
[CrossRef] [PubMed]

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11, 2813–2819 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813.
[CrossRef] [PubMed]

Lee, J. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

Lee, Y. L.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

Y. L. Lee, C. Jung, Y.-C. Noh, M. Y. Park, C. C. Byeon, D.-K. Ko, and J. Lee, “Channel Selective Wavelength Conversion and Tuning in periodic poled Ti:PPLN Channel Waveguides,” Opt. Express 12, 2649–2655 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649.
[CrossRef] [PubMed]

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11, 2813–2819 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813.
[CrossRef] [PubMed]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

Lu, Y.-Q.

Y.-Q. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 1035–1037 (2001).
[CrossRef]

Magari, K.

Marco, O.

Menzel, R.

Min, Y. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994).
[CrossRef]

Montrosset, I.

E. Strake, G. P. Bava, and I. Montrosset, “Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparison with the Scalar Finite-Element Method,” J. Lightwav. Technol. 6, 1126–1135 (1988).
[CrossRef]

Nishida, Y.

Noda, N.

M. Yamada, N. Noda, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–346 (1993).
[CrossRef]

Noh, Y.

Noh, Y.-C.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

Y. L. Lee, C. Jung, Y.-C. Noh, M. Y. Park, C. C. Byeon, D.-K. Ko, and J. Lee, “Channel Selective Wavelength Conversion and Tuning in periodic poled Ti:PPLN Channel Waveguides,” Opt. Express 12, 2649–2655 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649.
[CrossRef] [PubMed]

Oh, K.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

Parameswaran, K. P.

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

Park, M. Y.

Quiring, V.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

Rabia, E.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).

S?olc, I.

Sacher, J.

Saitoh, M.

M. Yamada, N. Noda, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–346 (1993).
[CrossRef]

Salamo, G. J.

Y.-Q. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 1035–1037 (2001).
[CrossRef]

Sato, H.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994).
[CrossRef]

Schedel, M.

Shi, J.

J. Wang, J. Shi, Z. Zhou, and X. Chen, “Tunable multi-wavelength filter in periodically poled LiNbO3 by a local-temperature-control technique,” Opt. Express 15, 1561–1566 (2007).
[CrossRef] [PubMed]

J. Shi, J. Wang, L. Chen, X. Chen, and Y. Xia, “Tunable Sﬞolc-type filter in periodically poled LiNbO3 by UV-light illumination,” Opt. Express 14, 6279–6284 (2006).
[CrossRef] [PubMed]

L. Chen, J. Shi, X. Chen, and Y. Xia, “Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter,” Appl. Phys. Lett. 88, 121118-121118-3, (2006).
[CrossRef]

J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
[CrossRef]

Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[CrossRef] [PubMed]

Shin, W.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Sohler, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).

Strake, E.

E. Strake, G. P. Bava, and I. Montrosset, “Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparison with the Scalar Finite-Element Method,” J. Lightwav. Technol. 6, 1126–1135 (1988).
[CrossRef]

Stry, S.

Suche, H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

Suhara, T.

T. Suhara and H. Ishizuki, “Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
[CrossRef]

T. Suhara and M. Fujimura, “Theoretical Analysis of Waveguide Second-Harmonic Generation Phase Matched with Uniform and Chirped Gratings,” IEEE Quantum Electron. 26, 1265–1275, (1990).
[CrossRef]

Suzuki, H.

Tadanaga, O.

Tehranchi, A.

A. Tehranchi and R. Kashyap, “Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Broadband Frequency Converters Based on Second-Harmonic Generation,” J. Lighw. Technol. 26, 343–349 (2008).
[CrossRef]

Umeki, T.

Wang, J.

Watanabe, K.

M. Yamada, N. Noda, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–346 (1993).
[CrossRef]

Xia, Y.

L. Chen, J. Shi, X. Chen, and Y. Xia, “Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter,” Appl. Phys. Lett. 88, 121118-121118-3, (2006).
[CrossRef]

J. Shi, J. Wang, L. Chen, X. Chen, and Y. Xia, “Tunable Sﬞolc-type filter in periodically poled LiNbO3 by UV-light illumination,” Opt. Express 14, 6279–6284 (2006).
[CrossRef] [PubMed]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[CrossRef] [PubMed]

Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
[CrossRef]

J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
[CrossRef]

Xiao, M.

Y.-Q. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 1035–1037 (2001).
[CrossRef]

Yamada, M.

M. Yamada, N. Noda, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–346 (1993).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994).
[CrossRef]

Yanagawa, T.

Yariv, A.

A. Yariv and P. Yeh, Optical waves in crystals, (Wiley, New York, 1984), 189–194.

Yeh, P.

A. Yariv and P. Yeh, Optical waves in crystals, (Wiley, New York, 1984), 189–194.

Yu, B.-A.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776–2782 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2776.
[CrossRef] [PubMed]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

Yu, N. E.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, J. Lee, B.-A. Yu, W. Shin, T. J. Eom, and Y.-C. Noh, “Wavelength filtering characteristics of Sﬞolc filter based on Ti:PPLN channel waveguide,” Opt. Lett. 32, 2813–2815 (2007).
[CrossRef] [PubMed]

Yu, T. J.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11, 2813–2819 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813.
[CrossRef] [PubMed]

Zhou, Z.

Zhu, Y.

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117 (2003).
[CrossRef] [PubMed]

Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
[CrossRef]

J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).

Appl. Phys. Lett. (4)

L. Chen, J. Shi, X. Chen, and Y. Xia, “Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter,” Appl. Phys. Lett. 88, 121118-121118-3, (2006).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, K.-K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.,  86, 011104-011104-3 (2005).
[CrossRef]

M. Yamada, N. Noda, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–346 (1993).
[CrossRef]

Y.-Q. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 1035–1037 (2001).
[CrossRef]

Electron. Lett. (2)

J. Shi, X. Chen, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Observaton of Solc-like filter in periodically poled lithium niobate,” Electron. Lett. 39, 224–225 (2003).
[CrossRef]

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Sﬞolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44, 30–32 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmoic Generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, “Waveguide-Type Wavelength-Tunable Sﬞolc Filter in a Periodically Poled Ti:LiNbO3 Wavegudie,” IEEE Photon. Technol. Lett. 19, 1505–1507 (2007).
[CrossRef]

T. Suhara and H. Ishizuki, “Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching,” IEEE Photon. Technol. Lett. 13, 1203–1205 (2001).
[CrossRef]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, “Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies,” IEEE Photon. Technol. Lett. 15, 978–980 (2003).
[CrossRef]

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

IEEE Quantum Electron. (1)

T. Suhara and M. Fujimura, “Theoretical Analysis of Waveguide Second-Harmonic Generation Phase Matched with Uniform and Chirped Gratings,” IEEE Quantum Electron. 26, 1265–1275, (1990).
[CrossRef]

J. Lightwav. Technol. (1)

E. Strake, G. P. Bava, and I. Montrosset, “Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparison with the Scalar Finite-Element Method,” J. Lightwav. Technol. 6, 1126–1135 (1988).
[CrossRef]

J. Lighw. Technol. (1)

A. Tehranchi and R. Kashyap, “Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Broadband Frequency Converters Based on Second-Harmonic Generation,” J. Lighw. Technol. 26, 343–349 (2008).
[CrossRef]

J. Opt. Soc. Am. (2)

S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8, 797–804 (1991).

I. Sﬞolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621–625 (1965).
[CrossRef]

Opt. Commun. (1)

Y. Zhu, X. Chen, J. Shi, Y. Chen, Y. Xia, and Y. Chen, “Wide-range tunable wavelength filter in periodically poled lithium niobate,” Opt. Commun. 228, 139–143 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Other (1)

A. Yariv and P. Yeh, Optical waves in crystals, (Wiley, New York, 1984), 189–194.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental setup for a bandwidth tunable the Ti:PPLN Sﬞolc filter.

Fig. 2.
Fig. 2.

Optical spectrum of the Ti:PPLN Sﬞolc filter at room temperature. The scatter (O) and solid line indicate the experimental data and theoretical curve respectively.

Fig. 3.
Fig. 3.

The transmission curves of the Ti:PPLN Sﬞolc filter for different temperature gradients. (a)Measured transmission spectra for four different temperature gradients, (b) Theoretical results for transmission spectra for four different temperature gradients.

Fig. 4.
Fig. 4.

The bandwidth of the Ti:PPLN Sﬞolc filter for different temperature gradients. The scatters and dot line indicate experimental results and theoretical calculation, respectively. The theoretical bandwidths are calculated by using eq. (6) and (8).

Fig. 5.
Fig. 5.

The transmittance of the Ti:PPLN Sﬞolc filter for different temperature gradients. The scatters and solid line indicate experimental results and theoretical calculation, respectively.

Tables (1)

Tables Icon

Table 1. Characteristics of Ti:PPLN waveguide

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d d z A o ( z ) = i κ ( z ) A e ( z ) e i Δ k z ,
d d z A e ( z ) = i κ * ( z ) A o ( z ) e i Δ k z ,
κ = i ω c n o 2 n e 2 n o n e ρ sin ( m π D ) m π ,
A o ( 0 ) = 1
A e ( 0 ) = 0 .
A e 2 = κ 2 sin 2 s L s 2 ,
T ( z ) = T ( 0 ) + [ T ( L ) T ( 0 ) ] ( z / L )
Δ k ( z ) = 2 π λ [ n o ( T , z ) n e ( T , z ) ] 2 π Λ ,
δ ( Δ k Λ ) = δ ( Δ k ) · Λ + Δ k · δ Λ
= 2 π [ d n o / d T d n e / d T n o n e + α ] δ T ,

Metrics