Abstract

When laser-etching channels through solid targets, the etch-rate is known to decrease with increasing depth, partly because of absorption at the sides of the channel. For ultrafast-laser pulses at repetition rates >100MHz, we show that the etch-rate is also affected by optical properties of the beam: the channel acts as a waveguide, and so the pulses will decompose into dispersive normal modes. Additionally, plasma on the inner surface of the channel will cause scattering of the beam. These effects will cause a loss of spatial coherence in the pulse, which will affect the propagated intensity distribution and ultimately the etch-rate. We have characterized this effect for various foil thicknesses to determine the evolution of the beam while drilling through metal.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [CrossRef]
  2. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
  3. S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).
  4. S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).
  5. H. Zheng, E. Gan, and G. C. Lim, “Investigation of laser via formation technology for the manufacturing of high density substrates,” Opt. Lasers Eng. 36, 355–371 (2001).
    [CrossRef]
  6. J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
    [CrossRef]
  7. F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
    [CrossRef]
  8. T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
    [CrossRef]
  9. S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys.  A 61, 33–37 (1995).
  10. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
    [CrossRef]
  11. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).
  12. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
  13. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
    [CrossRef]
  14. M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys. A 69, 883–886 (1999).
  15. P. R. Herman, A. Oettl, K. P. Chen, R. S. Marjoribanks, M. K. Reed, and J. Neev, eds., pp. 148–155 (1999).
  16. R. Marjoribanks, Y. Kerachian, P. Herman, S. Camacho-Lopez, and M. Nantel, “Pulsetrain ‘burst’ machining: ultrafast-laser microprocessing at ultrahigh (>100 MHz) pulse-rates,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2001 (Optical Society of America, Baltimore, MD, USA), TOPS Vol. 56 (2001).
  17. D. Breitling, D. Fohl, F. Dausinger, T. Kononenko, and V. Konov, “Drilling of metals,” in Femtosecond Technology for Technical and Medical Applications, vol. 96 of Topics in Applied Physics, pp. 131–156 (Springer Berlin/Heidelberg, 2004).
    [CrossRef]
  18. A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, “Simulation of material removal efficiency with ultrashort laser pulses,” Appl. Phys. A 69, 95–98 (1999).
  19. S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated material,” Appl. Surf. Sci. 222, 293–306 (2004).
    [CrossRef]
  20. B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
    [CrossRef]
  21. A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys. A 76, 373–378 (2003).
  22. R. S. Marjoribanks, F. W. Budnik, L. Zhao, G. Kulcsar, M. Stanier, and J. Mihaychuk, “High-contrast terawatt chirped-pulse-amplification laser that uses a 1-ps Nd:glass oscillator,” Opt. Lett. 18, 361–363 (1993).
    [CrossRef] [PubMed]
  23. J. Dean, M. Bercx, M. Nantel, and R. Marjoribanks, “Transverse coherence measurement using a folded Michelson interferometer,” J. Opt. Soc. Am. A 24, 1742–1746 (2007).
    [CrossRef]
  24. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, chap. 5, pp. 252–287 (Cambridge University Press, 1995).
  25. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
  26. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
  27. C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: A two-stage process,” J. Appl. Phys.  99(9), 093101 (2006).
    [CrossRef]

2007 (1)

J. Dean, M. Bercx, M. Nantel, and R. Marjoribanks, “Transverse coherence measurement using a folded Michelson interferometer,” J. Opt. Soc. Am. A 24, 1742–1746 (2007).
[CrossRef]

2006 (1)

C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: A two-stage process,” J. Appl. Phys.  99(9), 093101 (2006).
[CrossRef]

2004 (1)

S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated material,” Appl. Surf. Sci. 222, 293–306 (2004).
[CrossRef]

2003 (1)

A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys. A 76, 373–378 (2003).

2001 (3)

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

H. Zheng, E. Gan, and G. C. Lim, “Investigation of laser via formation technology for the manufacturing of high density substrates,” Opt. Lasers Eng. 36, 355–371 (2001).
[CrossRef]

2000 (1)

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

1999 (3)

T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
[CrossRef]

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys. A 69, 883–886 (1999).

A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, “Simulation of material removal efficiency with ultrashort laser pulses,” Appl. Phys. A 69, 95–98 (1999).

1998 (2)

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

1997 (3)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).

1996 (2)

J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

1995 (1)

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys.  A 61, 33–37 (1995).

1993 (1)

1983 (1)

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).

1982 (1)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).

Ashkenasi, D.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).

Balling, P.

C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: A two-stage process,” J. Appl. Phys.  99(9), 093101 (2006).
[CrossRef]

Banks, P. S.

A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, “Simulation of material removal efficiency with ultrashort laser pulses,” Appl. Phys. A 69, 95–98 (1999).

Bauer, T.

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

Bercx, M.

J. Dean, M. Bercx, M. Nantel, and R. Marjoribanks, “Transverse coherence measurement using a folded Michelson interferometer,” J. Opt. Soc. Am. A 24, 1742–1746 (2007).
[CrossRef]

Bille, J.

T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
[CrossRef]

Bille, J. F.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

Breitling, D.

D. Breitling, D. Fohl, F. Dausinger, T. Kononenko, and V. Konov, “Drilling of metals,” in Femtosecond Technology for Technical and Medical Applications, vol. 96 of Topics in Applied Physics, pp. 131–156 (Springer Berlin/Heidelberg, 2004).
[CrossRef]

Budnik, F. W.

Camacho-Lopez, S.

R. Marjoribanks, Y. Kerachian, P. Herman, S. Camacho-Lopez, and M. Nantel, “Pulsetrain ‘burst’ machining: ultrafast-laser microprocessing at ultrahigh (>100 MHz) pulse-rates,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2001 (Optical Society of America, Baltimore, MD, USA), TOPS Vol. 56 (2001).

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Campbell, E. E. B.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).

Celliers, P. M.

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

Chen, K. P.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys. A 69, 883–886 (1999).

P. R. Herman, A. Oettl, K. P. Chen, R. S. Marjoribanks, M. K. Reed, and J. Neev, eds., pp. 148–155 (1999).

Chichkov, B. N.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

Da Silva, L.

J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Dausinger, F.

D. Breitling, D. Fohl, F. Dausinger, T. Kononenko, and V. Konov, “Drilling of metals,” in Femtosecond Technology for Technical and Medical Applications, vol. 96 of Topics in Applied Physics, pp. 131–156 (Springer Berlin/Heidelberg, 2004).
[CrossRef]

Dean, J.

J. Dean, M. Bercx, M. Nantel, and R. Marjoribanks, “Transverse coherence measurement using a folded Michelson interferometer,” J. Opt. Soc. Am. A 24, 1742–1746 (2007).
[CrossRef]

Demchuk, A.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys.  A 61, 33–37 (1995).

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Eichler, J.

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

Evans, R.

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Fallnich, C.

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

Fauchet, P. M.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).

Feit, M.

J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Feit, M. D.

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, “Simulation of material removal efficiency with ultrashort laser pulses,” Appl. Phys. A 69, 95–98 (1999).

Fischer, J. P.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

Fohl, D.

D. Breitling, D. Fohl, F. Dausinger, T. Kononenko, and V. Konov, “Drilling of metals,” in Femtosecond Technology for Technical and Medical Applications, vol. 96 of Topics in Applied Physics, pp. 131–156 (Springer Berlin/Heidelberg, 2004).
[CrossRef]

Franklin, S. R.

S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated material,” Appl. Surf. Sci. 222, 293–306 (2004).
[CrossRef]

Gan, E.

H. Zheng, E. Gan, and G. C. Lim, “Investigation of laser via formation technology for the manufacturing of high density substrates,” Opt. Lasers Eng. 36, 355–371 (2001).
[CrossRef]

Götz, M. H.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

Greenhalgh, C.

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Guosheng, Z.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).

Herman, P.

R. Marjoribanks, Y. Kerachian, P. Herman, S. Camacho-Lopez, and M. Nantel, “Pulsetrain ‘burst’ machining: ultrafast-laser microprocessing at ultrahigh (>100 MHz) pulse-rates,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2001 (Optical Society of America, Baltimore, MD, USA), TOPS Vol. 56 (2001).

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Herman, P. R.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys. A 69, 883–886 (1999).

P. R. Herman, A. Oettl, K. P. Chen, R. S. Marjoribanks, M. K. Reed, and J. Neev, eds., pp. 148–155 (1999).

Horvath, C.

T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
[CrossRef]

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

Jacobs, H.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

Joslin, E. J.

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

Juhasz, T.

T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
[CrossRef]

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

Kamlage, G.

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

Kerachian, Y.

R. Marjoribanks, Y. Kerachian, P. Herman, S. Camacho-Lopez, and M. Nantel, “Pulsetrain ‘burst’ machining: ultrafast-laser microprocessing at ultrahigh (>100 MHz) pulse-rates,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2001 (Optical Society of America, Baltimore, MD, USA), TOPS Vol. 56 (2001).

Kim, B.-M.

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

Komashko, A. M.

A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, “Simulation of material removal efficiency with ultrashort laser pulses,” Appl. Phys. A 69, 95–98 (1999).

Kononenko, T.

D. Breitling, D. Fohl, F. Dausinger, T. Kononenko, and V. Konov, “Drilling of metals,” in Femtosecond Technology for Technical and Medical Applications, vol. 96 of Topics in Applied Physics, pp. 131–156 (Springer Berlin/Heidelberg, 2004).
[CrossRef]

Konov, V.

D. Breitling, D. Fohl, F. Dausinger, T. Kononenko, and V. Konov, “Drilling of metals,” in Femtosecond Technology for Technical and Medical Applications, vol. 96 of Topics in Applied Physics, pp. 131–156 (Springer Berlin/Heidelberg, 2004).
[CrossRef]

Korte, R.

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

Kulcsar, G.

Kurtz, R.

T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
[CrossRef]

Lapczyna, M.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys. A 69, 883–886 (1999).

Lilge, L.

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Lim, G. C.

H. Zheng, E. Gan, and G. C. Lim, “Investigation of laser via formation technology for the manufacturing of high density substrates,” Opt. Lasers Eng. 36, 355–371 (2001).
[CrossRef]

Liu, X.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Loesel, F.

T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

Loesel, F. H.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, chap. 5, pp. 252–287 (Cambridge University Press, 1995).

Marjoribanks, R.

J. Dean, M. Bercx, M. Nantel, and R. Marjoribanks, “Transverse coherence measurement using a folded Michelson interferometer,” J. Opt. Soc. Am. A 24, 1742–1746 (2007).
[CrossRef]

R. Marjoribanks, Y. Kerachian, P. Herman, S. Camacho-Lopez, and M. Nantel, “Pulsetrain ‘burst’ machining: ultrafast-laser microprocessing at ultrahigh (>100 MHz) pulse-rates,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2001 (Optical Society of America, Baltimore, MD, USA), TOPS Vol. 56 (2001).

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Marjoribanks, R. S.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys. A 69, 883–886 (1999).

R. S. Marjoribanks, F. W. Budnik, L. Zhao, G. Kulcsar, M. Stanier, and J. Mihaychuk, “High-contrast terawatt chirped-pulse-amplification laser that uses a 1-ps Nd:glass oscillator,” Opt. Lett. 18, 361–363 (1993).
[CrossRef] [PubMed]

P. R. Herman, A. Oettl, K. P. Chen, R. S. Marjoribanks, M. K. Reed, and J. Neev, eds., pp. 148–155 (1999).

Mihaychuk, J.

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

Mourou, G.

T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Nantel, M.

J. Dean, M. Bercx, M. Nantel, and R. Marjoribanks, “Transverse coherence measurement using a folded Michelson interferometer,” J. Opt. Soc. Am. A 24, 1742–1746 (2007).
[CrossRef]

R. Marjoribanks, Y. Kerachian, P. Herman, S. Camacho-Lopez, and M. Nantel, “Pulsetrain ‘burst’ machining: ultrafast-laser microprocessing at ultrahigh (>100 MHz) pulse-rates,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2001 (Optical Society of America, Baltimore, MD, USA), TOPS Vol. 56 (2001).

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Neev, J.

J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

P. R. Herman, A. Oettl, K. P. Chen, R. S. Marjoribanks, M. K. Reed, and J. Neev, eds., pp. 148–155 (1999).

Nielsen, C. S.

C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: A two-stage process,” J. Appl. Phys.  99(9), 093101 (2006).
[CrossRef]

Noack, F.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

Nolte, S.

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

Oettl, A.

P. R. Herman, A. Oettl, K. P. Chen, R. S. Marjoribanks, M. K. Reed, and J. Neev, eds., pp. 148–155 (1999).

Ostendorf, A.

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

Perry, M.

J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Perry, M. D.

A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, “Simulation of material removal efficiency with ultrashort laser pulses,” Appl. Phys. A 69, 95–98 (1999).

Preston, J. S.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).

Preuss, S.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys.  A 61, 33–37 (1995).

Pronko, P. P.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

Reed, M. K.

P. R. Herman, A. Oettl, K. P. Chen, R. S. Marjoribanks, M. K. Reed, and J. Neev, eds., pp. 148–155 (1999).

Richardson, K.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

Richardson, M.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

Robertson, J.

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Rosenfeld, A.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).

Rubenchik, A.

J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Rubenchik, A. M.

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, “Simulation of material removal efficiency with ultrashort laser pulses,” Appl. Phys. A 69, 95–98 (1999).

Shah, L.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

Siegman, A. E.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).

Silva, L. B. D.

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).

Stanier, M.

Stuart, B.

J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Stuart, B. C.

A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys. A 76, 373–378 (2003).

Stuke, M.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys.  A 61, 33–37 (1995).

Suhm, N.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

Tan, H. W.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys. A 69, 883–886 (1999).

Tawney, J.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

Thareja, R. K.

S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated material,” Appl. Surf. Sci. 222, 293–306 (2004).
[CrossRef]

Torti, C.

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

Tünnermann, A.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).

VanRompay, P. A.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

Varel, H.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).

von Alvensleben, F.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

Wagner, T.

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

Wähmer, M.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).

Wellegehausen, B.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

Welling, H.

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, chap. 5, pp. 252–287 (Cambridge University Press, 1995).

Wynne, A. E.

A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys. A 76, 373–378 (2003).

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).

Zhao, L.

Zheng, H.

H. Zheng, E. Gan, and G. C. Lim, “Investigation of laser via formation technology for the manufacturing of high density substrates,” Opt. Lasers Eng. 36, 355–371 (2001).
[CrossRef]

Appl. Phys. (6)

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121–128 (1998).
[CrossRef]

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys.  A 61, 33–37 (1995).

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys. A 69, 883–886 (1999).

A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, “Simulation of material removal efficiency with ultrashort laser pulses,” Appl. Phys. A 69, 95–98 (1999).

A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys. A 76, 373–378 (2003).

Appl. Surf. Sci. (2)

S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated material,” Appl. Surf. Sci. 222, 293–306 (2004).
[CrossRef]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).
[CrossRef]

J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, “Ultrashort pulse lasers for hard tissue ablation,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

J. Appl. Phys. (1)

C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: A two-stage process,” J. Appl. Phys.  99(9), 093101 (2006).
[CrossRef]

J. Biomed. Opt. (1)

B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, “Influence of pulse duration on ultrashort laser pulse ablation of biological tissues,” J. Biomed. Opt. 6(3), 332–338 (2001).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Dean, M. Bercx, M. Nantel, and R. Marjoribanks, “Transverse coherence measurement using a folded Michelson interferometer,” J. Opt. Soc. Am. A 24, 1742–1746 (2007).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).

Opt. Commun. (1)

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129, 134–142 (1996).
[CrossRef]

Opt. Lasers Eng. (1)

H. Zheng, E. Gan, and G. C. Lim, “Investigation of laser via formation technology for the manufacturing of high density substrates,” Opt. Lasers Eng. 36, 355–371 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (3)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).

Other (6)

S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, “Single-pulse and ‘pulsetrain-burst’ (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).

S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, “Microstructuring with femtosecond lasers,” Advanced Engineering Materials 2, 23–27 (2000).

P. R. Herman, A. Oettl, K. P. Chen, R. S. Marjoribanks, M. K. Reed, and J. Neev, eds., pp. 148–155 (1999).

R. Marjoribanks, Y. Kerachian, P. Herman, S. Camacho-Lopez, and M. Nantel, “Pulsetrain ‘burst’ machining: ultrafast-laser microprocessing at ultrahigh (>100 MHz) pulse-rates,” in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2001 (Optical Society of America, Baltimore, MD, USA), TOPS Vol. 56 (2001).

D. Breitling, D. Fohl, F. Dausinger, T. Kononenko, and V. Konov, “Drilling of metals,” in Femtosecond Technology for Technical and Medical Applications, vol. 96 of Topics in Applied Physics, pp. 131–156 (Springer Berlin/Heidelberg, 2004).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, chap. 5, pp. 252–287 (Cambridge University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Observed etch rate, per pulse, differentially localized to different depths in aluminum foil, for 133MHz pulsetrains of 1ps pulses as described in experimental setup.

Fig. 2.
Fig. 2.

(Color online) Left: Unobstructed beam-waist. Middle: Free-space propagation 150 µm past the unobstructed beam-waist. Right: Same as middle, but after drilling through 150 µm Al foil instead of free-space propagation. 1ps pulses in 133MHz pulsetrain-bursts, as described in experimental setup; same scale in all images.

Fig. 3.
Fig. 3.

Schematic of equivalent-target-plane (ETP), near-field (NF), and far-field (FF) imaging. The image of the exit aperture of the foil is relayed to the double-slit of Young’s apparatus and also to the CCD plane of the coherence interferometer. Incident and transmitted energy and power were also recorded.

Fig. 4.
Fig. 4.

(Color online) Map of degree of coherence as a function of transverse separation (x-axis) and vertical position (y-axis). The black dots correspond to fringes, where the coherence was measured. The colours (shades) indicate the calculated degree of coherence. Degree of coherence/fringe-visibility should go to 1 for zero-value separation; light-scattering and non-parallel beam geometry account for the defect. Interpolation between data-points was done by Delaunay triangulation.

Fig. 5.
Fig. 5.

(Color online) Degree of coherence vs. transverse separation. Solid (black) lines: drilling through 150µm of aluminium, measured using the interferometer. Discrete points: drilling through 150µm of aluminium, measured using Young’s double-slit setup. Dashed (blue) line: free-propagated beam, measured using the interferometer. Each interferometer curve was obtained with a different single shot, and each double-slit point was obtained by averaging data over several shots.

Fig. 6.
Fig. 6.

Degree of global coherence vs. foil thickness. Each point corresponds to the mean of several measurements, and the error bars represent the standard error of the mean. The data is fit to an exponential curve.

Fig. 7.
Fig. 7.

(Color online) Normalized transmission vs. foil thickness: experimental transmission (squares) compared to values expected under Gaussian (triangles), and Gaussian Schell-model (circles) propagation. Expected values are calculated from measured coherence at each foil thickness, and include error-bars. Each set of data is fit by a curve of the form of Eq. (4), to illustrate the trends.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ s ( z ) = ρ s ( 0 ) { 1 + z 2 k 2 ρ s 4 ( 0 ) [ 1 + 4 ( σ s σ g ) 2 ] } 1 2
σ s , g = ρ s , μ ( 0 ) 2
q = σ g σ s = ρ μ ( z ) ρ s ( z )
T = 1 exp { a 2 ρ s 2 ( 0 ) [ 1 + z 2 k 2 ρ s 4 ( 0 ) ( 1 + 4 q ) ] }

Metrics