Abstract

We propose a low-loss air-core polarization maintaining polymer fiber for terahertz (THz) wave guiding. The periodic arrangement of square holes with round corners in the cladding offers a bandgap effect for mode guiding. Numerical simulations show that the bandgap effect repels the modal power from the absorbent background polymers, resulting in a significant suppression of absorption loss of the polymers by a factor of more than 25. The phase-index birefringence of the proposed THz fiber is in the order of 10-3.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
    [CrossRef]
  2. J. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5263.
    [CrossRef] [PubMed]
  3. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  4. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
    [CrossRef]
  5. S. P. Jamison, R. W. McCowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
    [CrossRef]
  6. H. Han, H. Park, M. Cho, and J. Kim, "THz pulse propagation in plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
    [CrossRef]
  7. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004).
    [CrossRef]
  8. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
    [CrossRef]
  9. T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, "Terahertz Sources and Detectors and Their Application to Biological Sensing," Phil. Trans. R. Soc. Lond. A 362, 365-377 (2004).
    [CrossRef]
  10. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express 16, 7-12 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-1-7.
    [CrossRef] [PubMed]
  11. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  12. Y. S. Jin, G. L. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49,513-517 (2006).
  13. F. Poletti and D. J. Richardson, "Hollow-core photonic bandgap fibers based on a square lattice cladding," Opt. Lett. 32, 2282-2284 (2007).
    [CrossRef] [PubMed]
  14. M. Digonnet, H. Kim, J. Shin, S. Fan, and G. Kino, "Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers," Opt. Express 12, 1864-1872 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1864.
    [CrossRef] [PubMed]
  15. A. W. Snyder and J. D. LoveOptical Waveguide Theory (Chapman and Hall, New York, 1983).

2008 (2)

2007 (2)

2006 (1)

Y. S. Jin, G. L. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49,513-517 (2006).

2004 (5)

M. Digonnet, H. Kim, J. Shin, S. Fan, and G. Kino, "Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers," Opt. Express 12, 1864-1872 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1864.
[CrossRef] [PubMed]

J. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5263.
[CrossRef] [PubMed]

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, "Terahertz Sources and Detectors and Their Application to Biological Sensing," Phil. Trans. R. Soc. Lond. A 362, 365-377 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004).
[CrossRef]

2003 (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, "THz pulse propagation in plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

2000 (2)

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

S. P. Jamison, R. W. McCowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Chang, H.-C.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Chen, H.-W.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Cho, M.

Crowe, T. W.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, "Terahertz Sources and Detectors and Their Application to Biological Sensing," Phil. Trans. R. Soc. Lond. A 362, 365-377 (2004).
[CrossRef]

Digonnet, M.

Fan, S.

George, R.

Globus, T.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, "Terahertz Sources and Detectors and Their Application to Biological Sensing," Phil. Trans. R. Soc. Lond. A 362, 365-377 (2004).
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004).
[CrossRef]

Grischkowsky, D.

S. P. Jamison, R. W. McCowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

Han, H.

Han, Y.

Harrington, J.

Hesler, J. L.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, "Terahertz Sources and Detectors and Their Application to Biological Sensing," Phil. Trans. R. Soc. Lond. A 362, 365-377 (2004).
[CrossRef]

Jamison, S. P.

S. P. Jamison, R. W. McCowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Jeon, S. G.

Y. S. Jin, G. L. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49,513-517 (2006).

Jin, Y. S.

Y. S. Jin, G. L. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49,513-517 (2006).

Jung, E.

Kim, G. L.

Y. S. Jin, G. L. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49,513-517 (2006).

Kim, H.

Kim, J.

Kino, G.

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Lu, J.-Y.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

McCowan, R. W.

S. P. Jamison, R. W. McCowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Mendis, R.

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Moon, K.

Mueller, E.

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004).
[CrossRef]

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Park, H.

Pedersen, P.

Poletti, F.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004).
[CrossRef]

Richardson, D. J.

Russell, P. St. J.

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004).
[CrossRef]

Shin, J.

Sun, C.-K.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004).
[CrossRef]

Tonouchi, M.

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Woolard, D. L.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, "Terahertz Sources and Detectors and Their Application to Biological Sensing," Phil. Trans. R. Soc. Lond. A 362, 365-377 (2004).
[CrossRef]

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

S. P. Jamison, R. W. McCowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, "THz pulse propagation in plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. S. Jin, G. L. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49,513-517 (2006).

Jpn. J. Appl. Lett. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phil. Trans. R. Soc. Lond. A (1)

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, "Terahertz Sources and Detectors and Their Application to Biological Sensing," Phil. Trans. R. Soc. Lond. A 362, 365-377 (2004).
[CrossRef]

Science (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (1)

A. W. Snyder and J. D. LoveOptical Waveguide Theory (Chapman and Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Bandgap map of square lattice photonic crystal in fiber cladding with parameters: D/Λ=0.96, d/D=0.6 for PTFE polymer. The blank region represents the bandgap, in which the fiber modes are guided. The inset shows the unit cell, in which the four corners of a square hole are rounded with circles.

Fig. 2.
Fig. 2.

(a) Relative bandwidth supported by the square lattice photonic crystal cladding versus d/D for different D/Λ. The background material is PTFE. (b) Relative bandwidth evolution with parameter D/Λ=0.96 for three background material PTFE, PP and HDPE.

Fig. 3.
Fig. 3.

Bandgap maps and mode dispersion curves within bandgaps. Mode profiles and transverse electric field distributions of fundamental x-polarized fundamental mode (inset (a)) and y-polarized fundamental mode (inset (b)) at frequency f=1 THz. The background index profile is also demonstrated. Fiber parameters: D/Λ=0.96, d/D=0.6 for PTFE.

Fig. 4.
Fig. 4.

(a) Phase-index birefringence B within the bandgap and confinement loss of the x and y-polarized modes with 7 rings of holes included in the cladding. (b) Central frequency of the transmission band and phase-index birefringence at central frequency as a function of d/D for three different polymers.

Fig. 5.
Fig. 5.

(a) Modal power fraction in air-core and normalized modal absorption loss for x and y-polarized modes. (b) Normalized modal absorption loss at central frequency of transmission band of y-polarized mode as a function of d/D for three different background materials.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ab α m = background n b E 2 d s all E 2 d s

Metrics