Abstract

The use of two types of phase modulations arising from the coherent rotations of ortho-hydrogen and para-hydrogen to generate an intense ultrashort ultraviolet pulse without substantial generation of sub-pulses was demonstrated. This technique allows use of a high-energy long-probe pulse in the pump-probe regime for generating a high-energy compressed pulse. A 100-fs ultraviolet pulse was compressed to 11-fs by the phase modulation followed by dispersion compensation with chirped mirrors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, "Generation of intense 8-fs pulses at 400 nm," Opt. Lett. 34, 24-26 (1999).
  2. C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999).
    [CrossRef]
  3. M. Wittmann, A. Nazarkin, and G. Korn, "fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations," Phys. Rev. Lett. 84, 5508-5511 (2000).
    [CrossRef] [PubMed]
  4. P. Baum, S. Lochbrunner, and E. Riedle, "Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling," Opt. Lett. 29, 1686-1688 (2004).
    [CrossRef] [PubMed]
  5. A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
    [CrossRef]
  6. M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
    [CrossRef]
  7. R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. Murnane, and H. Kapteyn, "Phase modulation of ultrashort light pulses using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903/1-4 (2002).
  8. N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901/1-4 (2002).
    [CrossRef]
  9. F. Noack, O. Steinkellner, P. Tzankov, H.-H. Ritze, J. Herrmann, and Y. Kida, "Generation of sub-30 fs ultraviolet pulses by Raman-induced phase modulation in nitrogen," Opt. Express 13, 2467-2474 (2005).
    [CrossRef] [PubMed]
  10. Y. Kida, T. Nagahara, S. Zaitsu, M. Matsuse, and T. Imasaka, "Pulse compression based on coherent molecular motion induced by transient stimulated Raman scattering," Opt. Express 14, 3083-3092 (2006).
    [CrossRef] [PubMed]
  11. Y. Kida, S. Zaitsu, and T. Imasaka, "Pulse Compression by Coherent Raman Scattering," Conference on Lasers and Electro-Optics CLEO 2007, OSA Technical Digest CD-ROM (OSA, Washington DC 2007), paper JTh14.
  12. R. W. Boyd, Nonlinear Optics (Academic, 2003), chap. 13.
  13. D. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
    [CrossRef]
  14. R. Trebino and D. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993).
    [CrossRef]
  15. J. Giordmaine and W. Kaiser, "Light scattering by coherently driven lattice vibrations," Phys. Rev. 144, 676-688 (1966).
    [CrossRef]
  16. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
    [CrossRef]

2006 (1)

2005 (1)

2004 (1)

2001 (1)

2000 (1)

M. Wittmann, A. Nazarkin, and G. Korn, "fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations," Phys. Rev. Lett. 84, 5508-5511 (2000).
[CrossRef] [PubMed]

1999 (4)

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
[CrossRef]

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, "Generation of intense 8-fs pulses at 400 nm," Opt. Lett. 34, 24-26 (1999).

C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999).
[CrossRef]

1993 (2)

D. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

R. Trebino and D. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993).
[CrossRef]

1966 (1)

J. Giordmaine and W. Kaiser, "Light scattering by coherently driven lattice vibrations," Phys. Rev. 144, 676-688 (1966).
[CrossRef]

Backus, S.

Baum, P.

Dühr, O.

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, "Generation of intense 8-fs pulses at 400 nm," Opt. Lett. 34, 24-26 (1999).

Durfee, C. G.

Elsaesser, T.

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Giordmaine, J.

J. Giordmaine and W. Kaiser, "Light scattering by coherently driven lattice vibrations," Phys. Rev. 144, 676-688 (1966).
[CrossRef]

Herrmann, J.

Imasaka, T.

Kaiser, W.

J. Giordmaine and W. Kaiser, "Light scattering by coherently driven lattice vibrations," Phys. Rev. 144, 676-688 (1966).
[CrossRef]

Kane, D.

R. Trebino and D. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993).
[CrossRef]

D. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Kapteyn, H.

Kapteyn, H. C.

Kida, Y.

Korn, G.

M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
[CrossRef]

M. Wittmann, A. Nazarkin, and G. Korn, "fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations," Phys. Rev. Lett. 84, 5508-5511 (2000).
[CrossRef] [PubMed]

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, "Generation of intense 8-fs pulses at 400 nm," Opt. Lett. 34, 24-26 (1999).

Krausz, F.

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, "Generation of intense 8-fs pulses at 400 nm," Opt. Lett. 34, 24-26 (1999).

Lochbrunner, S.

Maginnis, K.

Matsuse, M.

Mourou, G.

Murnane, M.

Murnane, M. M.

Nagahara, T.

Nazarkin, A.

M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
[CrossRef]

M. Wittmann, A. Nazarkin, and G. Korn, "fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations," Phys. Rev. Lett. 84, 5508-5511 (2000).
[CrossRef] [PubMed]

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Nibbering, E. T. J.

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, "Generation of intense 8-fs pulses at 400 nm," Opt. Lett. 34, 24-26 (1999).

Noack, F.

Riedle, E.

Ritze, H.-H.

Russek, U.

Steinkellner, O.

Tempea, G.

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, "Generation of intense 8-fs pulses at 400 nm," Opt. Lett. 34, 24-26 (1999).

Trebino, R.

D. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

R. Trebino and D. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993).
[CrossRef]

Tzankov, P.

Vdovin, G.

Wittmann, M.

M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
[CrossRef]

M. Wittmann, A. Nazarkin, and G. Korn, "fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations," Phys. Rev. Lett. 84, 5508-5511 (2000).
[CrossRef] [PubMed]

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Zaitsu, S.

Zeek, E.

IEEE J. Quantum Electron. (1)

D. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. (1)

J. Giordmaine and W. Kaiser, "Light scattering by coherently driven lattice vibrations," Phys. Rev. 144, 676-688 (1966).
[CrossRef]

Phys. Rev. Lett. (2)

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

M. Wittmann, A. Nazarkin, and G. Korn, "fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations," Phys. Rev. Lett. 84, 5508-5511 (2000).
[CrossRef] [PubMed]

Other (4)

Y. Kida, S. Zaitsu, and T. Imasaka, "Pulse Compression by Coherent Raman Scattering," Conference on Lasers and Electro-Optics CLEO 2007, OSA Technical Digest CD-ROM (OSA, Washington DC 2007), paper JTh14.

R. W. Boyd, Nonlinear Optics (Academic, 2003), chap. 13.

R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. Murnane, and H. Kapteyn, "Phase modulation of ultrashort light pulses using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903/1-4 (2002).

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901/1-4 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Phase change ϕ(z’, τ)-ϕ(0, τ) calculated under the assumption that ϕ o=ϕ p=0 rad and β oz=β pz ’=1 rad. The solid curve and dotted curve are calculated assuming the case where the two types of coherent rotations are induced, and the case where only the coherent rotation of ortho-H2 is induced, respectively. (b) Expanded view of (a).

Fig. 2.
Fig. 2.

(a) Calculated temporal profiles and (b) spectra of ultrashort pulses compressed by compensation for group-delay dispersion. In both figures, the waveforms are calculated assuming the time delays of 16.6 fs (solid line) and 72 fs (broken line). The frequency of a 100-fs probe pulse is modulated by the phase modulations arising from the coherent rotations of o-H2 and p-H2. In the shaded curves, the frequency is modulated by the phase modulation by only the coherent rotation of o-H2, and the time delay is 16.6 fs. The waveforms at the time delay of 72 fs are almost identical to those at 16.6 fs. Each waveform is normalized with respect to its peak intensity.

Fig. 3.
Fig. 3.

(a) Variation of peak intensity of the fundamental emission (393 nm) as a function of the time delay of the probe pulse (probe delay) with respect to the pump pulse. The intensity was divided by the peak intensity of the fundamental emission measured in the case where the coherent rotations were not induced. (b) Spectra of probe pulses emitted from the Raman cell. The probe delays were adjusted to 2270 fs (x in Fig. 1, solid line) and 2670 fs (y in Fig. 1, broken line), respectively. The inset shows an expanded view of a spectral structure.

Fig. 4.
Fig. 4.

(a) Spectrum of the probe pulse measured at the entrance of the autocorrelator using the multi-channel spectrometer (broken line), and the spectrum retrieved from the measured SD-FROG trace (solid line). The retrieved spectral phase is also shown in the figure (dotted line). Each spectrum in the figure is normalized by its peak intensity. (b) Temporal profile (solid line) and phase (dotted line) of the ultrashort pulse retrieved from the SD-FROG trace. The shaded curve shows the intensity profile calculated by the inverse Fourier transform of the measured spectrum assuming the case of the transform-limited pulse.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( z , t ) = A ( z , t ) exp [ i ( k 0 z ω 0 t ) ] + c . c . ,
p Ram ( z , t ) = [ N o ( α Q ) o Q o ( z , t ) + N p ( α Q ) p Q p ( z , t ) ] A ( z , t ) ,
Q o ( τ ) = Q o 0 sin [ Ω o ( τ + Δ t ) + ϕ o ] , Q p ( τ ) = Q p 0 sin [ Ω p ( τ + Δ t ) + ϕ p ] ,
z A ( z , τ ) = i 2 π ω 0 n 0 c p Ram ( z , τ ) ,
ϕ ( z , τ ) = ϕ 0 ( 0 , τ ) + 2 π ω 0 n 0 c N o ( α Q ) o Q o 0 sin [ Ω o ( τ + Δ t ) + ϕ o ] z
+ 2 π ω 0 n 0 c N p ( α Q ) p Q p 0 sin [ Ω p ( τ + Δ t ) + ϕ p ] } z
= ϕ 0 ( 0 , τ ) + { β o sin [ Ω o ( τ + Δ t ) + ϕ o ] + β p sin [ Ω p ( τ + Δ t ) + ϕ p ] } z .

Metrics