Abstract

By measuring linearly polarized photoluminescence (PL) from single, isolated gallium nitride (GaN) nanorods with the rod diameters in the subwavelength regime (30–90 nm), we present clear evidence for size dependence of polarization anisotropy. The maximum polarization ratio at room temperature (~0.9 with emission and excitation light polarized parallel to the long axis of nanorod) occurs at the rod diameter of ~40 nm. The experimental data are compared with the recent theoretical model proposed for thick semiconductor nanowires. It is concluded that the optical confinement effects in this size regime play an important role in the observed giant polarization anisotropy. Furthermore, we have performed a temperature-dependent study of polarized PL to show the importance of internal emission anisotropy at low temperatures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, "One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires," Phys. Rev. Lett. 63, 2124-2127 (1989).
    [CrossRef] [PubMed]
  2. U. Bockelmann and G. Bastard, "Interband absorption in quantum wires. I. Zero-magnetic-field case," Phys. Rev. B 45, 1688-1699 (1992).
    [CrossRef]
  3. P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
    [CrossRef]
  4. T. Someya, H. Akiyama, and H. Sakaki, "Laterally squeezed excitonic wave function in quantum wires," Phys. Rev. Lett. 74, 3664-3667 (1995).
    [CrossRef] [PubMed]
  5. H. Akiyama, T. Someya, and H. Sakaki, "Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method," Phys. Rev. B 53, R4229-R4232 (1996).
    [CrossRef]
  6. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
    [CrossRef] [PubMed]
  7. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B,  107, 8816-8828 (2003).
    [CrossRef]
  8. J. Qi, A. M. Belcher, and J. M. White, "Spectroscopy of individual silicon nanowires," Appl. Phys. Lett. 82, 2616-2618 (2003).
    [CrossRef]
  9. D. Kulik, H. Htoon, C. K. Shih, and Y. Li, "Photoluminescence properties of single CdS nanorods," J. Appl. Phys. 95, 1056-1063 (2004).
    [CrossRef]
  10. C. X. Shan, Z. Liu, and S. K. Hark, "Photoluminescence polarization in individual CdSe nanowires," Phys. Rev. B 74, 153402 (2006).
    [CrossRef]
  11. P. C. Sercel and K. J. Vahala, "Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects," Appl. Phys. Lett. 57, 545-547 (1990).
    [CrossRef]
  12. P. C. Sercel and K. J. Vahala, "Polarization dependence of optical absorption and emission in quantum wires," Phys. Rev. B 44, 5681-5691 (1991).
    [CrossRef]
  13. C. R. McIntyre and L. J. Sham, "Theory of luminescence polarization anisotropy in quantum wires," Phys. Rev. B 45, 9443-9446 (1992).
    [CrossRef]
  14. M. P. Persson and H. Q. Xu, "Giant polarization anisotropy in optical transitions of free-standing InP nanowires," Phys. Rev. B 70, 161310(R) (2004).
    [CrossRef]
  15. M. Califano and A. Zunger, "Anisotropy of interband transitions in InAs quantum wires: An atomistic theory," Phys. Rev. B 70, 165317 (2004).
    [CrossRef]
  16. A. V. Maslov and C. Z. Ning, "Radius-dependent polarization anisotropy in semiconductor nanowires," Phys. Rev. B 72, 161310(R) (2005).
    [CrossRef]
  17. H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in semiconducting and metallic nanowires," Phys. Rev. B 72, 115308 (2005).
    [CrossRef]
  18. H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in thick semiconducting nanowires," J. Appl. Phys. 100, 024314 (2006).
    [CrossRef]
  19. J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
    [CrossRef]
  20. H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006).
    [CrossRef]
  21. P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN," Phys. Rev. B 70, 035210 (2004).
    [CrossRef]
  22. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Elsevier Butterworth-Heinemann, 1984).
  23. V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics (Academic, 1978).
  24. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).
  25. H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, "Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region," Opt. Express 16, 8106-8116 (2008).
    [CrossRef] [PubMed]
  26. B. Gil and O. Briot, "Internal structure and oscillator strengths of excitons in strained α-GaN," Phys. Rev. B 55, 2530-2534 (1997).
    [CrossRef]
  27. M. A. Reshchikov and H. Morkoç "Luminescence properties of defects in GaN," J. Appl. Phys. 97, 061301 (2005).
    [CrossRef]
  28. H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, "Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1??xN," Appl. Phys. Lett. 89, 251107 (2006).
    [CrossRef]
  29. S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007).
    [CrossRef]

2008 (1)

2007 (1)

S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007).
[CrossRef]

2006 (5)

H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, "Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1??xN," Appl. Phys. Lett. 89, 251107 (2006).
[CrossRef]

C. X. Shan, Z. Liu, and S. K. Hark, "Photoluminescence polarization in individual CdSe nanowires," Phys. Rev. B 74, 153402 (2006).
[CrossRef]

H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in thick semiconducting nanowires," J. Appl. Phys. 100, 024314 (2006).
[CrossRef]

J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
[CrossRef]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006).
[CrossRef]

2005 (2)

H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in semiconducting and metallic nanowires," Phys. Rev. B 72, 115308 (2005).
[CrossRef]

M. A. Reshchikov and H. Morkoç "Luminescence properties of defects in GaN," J. Appl. Phys. 97, 061301 (2005).
[CrossRef]

2004 (3)

M. Califano and A. Zunger, "Anisotropy of interband transitions in InAs quantum wires: An atomistic theory," Phys. Rev. B 70, 165317 (2004).
[CrossRef]

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN," Phys. Rev. B 70, 035210 (2004).
[CrossRef]

D. Kulik, H. Htoon, C. K. Shih, and Y. Li, "Photoluminescence properties of single CdS nanorods," J. Appl. Phys. 95, 1056-1063 (2004).
[CrossRef]

2003 (2)

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B,  107, 8816-8828 (2003).
[CrossRef]

J. Qi, A. M. Belcher, and J. M. White, "Spectroscopy of individual silicon nanowires," Appl. Phys. Lett. 82, 2616-2618 (2003).
[CrossRef]

2001 (1)

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

1997 (1)

B. Gil and O. Briot, "Internal structure and oscillator strengths of excitons in strained α-GaN," Phys. Rev. B 55, 2530-2534 (1997).
[CrossRef]

1996 (1)

H. Akiyama, T. Someya, and H. Sakaki, "Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method," Phys. Rev. B 53, R4229-R4232 (1996).
[CrossRef]

1995 (2)

P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
[CrossRef]

T. Someya, H. Akiyama, and H. Sakaki, "Laterally squeezed excitonic wave function in quantum wires," Phys. Rev. Lett. 74, 3664-3667 (1995).
[CrossRef] [PubMed]

1992 (2)

U. Bockelmann and G. Bastard, "Interband absorption in quantum wires. I. Zero-magnetic-field case," Phys. Rev. B 45, 1688-1699 (1992).
[CrossRef]

C. R. McIntyre and L. J. Sham, "Theory of luminescence polarization anisotropy in quantum wires," Phys. Rev. B 45, 9443-9446 (1992).
[CrossRef]

1991 (1)

P. C. Sercel and K. J. Vahala, "Polarization dependence of optical absorption and emission in quantum wires," Phys. Rev. B 44, 5681-5691 (1991).
[CrossRef]

1990 (1)

P. C. Sercel and K. J. Vahala, "Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects," Appl. Phys. Lett. 57, 545-547 (1990).
[CrossRef]

1989 (1)

M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, "One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires," Phys. Rev. Lett. 63, 2124-2127 (1989).
[CrossRef] [PubMed]

Akiyama, H.

H. Akiyama, T. Someya, and H. Sakaki, "Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method," Phys. Rev. B 53, R4229-R4232 (1996).
[CrossRef]

T. Someya, H. Akiyama, and H. Sakaki, "Laterally squeezed excitonic wave function in quantum wires," Phys. Rev. Lett. 74, 3664-3667 (1995).
[CrossRef] [PubMed]

Barker, J. M.

J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
[CrossRef]

Bastard, G.

U. Bockelmann and G. Bastard, "Interband absorption in quantum wires. I. Zero-magnetic-field case," Phys. Rev. B 45, 1688-1699 (1992).
[CrossRef]

Belcher, A. M.

J. Qi, A. M. Belcher, and J. M. White, "Spectroscopy of individual silicon nanowires," Appl. Phys. Lett. 82, 2616-2618 (2003).
[CrossRef]

Bertness, K. A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
[CrossRef]

Blanchard, P. T.

J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
[CrossRef]

Bockelmann, U.

U. Bockelmann and G. Bastard, "Interband absorption in quantum wires. I. Zero-magnetic-field case," Phys. Rev. B 45, 1688-1699 (1992).
[CrossRef]

Briot, O.

B. Gil and O. Briot, "Internal structure and oscillator strengths of excitons in strained α-GaN," Phys. Rev. B 55, 2530-2534 (1997).
[CrossRef]

Califano, M.

M. Califano and A. Zunger, "Anisotropy of interband transitions in InAs quantum wires: An atomistic theory," Phys. Rev. B 70, 165317 (2004).
[CrossRef]

Chen, H.-Y.

H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, "Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region," Opt. Express 16, 8106-8116 (2008).
[CrossRef] [PubMed]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006).
[CrossRef]

Chen, J.-S.

Chen, W.-C.

Cui, Y.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Duan, X.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Forchel, A.

P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
[CrossRef]

Gil, B.

B. Gil and O. Briot, "Internal structure and oscillator strengths of excitons in strained α-GaN," Phys. Rev. B 55, 2530-2534 (1997).
[CrossRef]

Gippius, N. A.

P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
[CrossRef]

Grambow, P.

M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, "One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires," Phys. Rev. Lett. 63, 2124-2127 (1989).
[CrossRef] [PubMed]

Gréus, Ch.

P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
[CrossRef]

Gudiksen, M. S.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Gwo, S.

H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, "Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region," Opt. Express 16, 8106-8116 (2008).
[CrossRef] [PubMed]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006).
[CrossRef]

Hark, S. K.

C. X. Shan, Z. Liu, and S. K. Hark, "Photoluminescence polarization in individual CdSe nanowires," Phys. Rev. B 74, 153402 (2006).
[CrossRef]

Heitmann, D.

M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, "One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires," Phys. Rev. Lett. 63, 2124-2127 (1989).
[CrossRef] [PubMed]

Holtz, P. O.

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN," Phys. Rev. B 70, 035210 (2004).
[CrossRef]

Htoon, H.

D. Kulik, H. Htoon, C. K. Shih, and Y. Li, "Photoluminescence properties of single CdS nanorods," J. Appl. Phys. 95, 1056-1063 (2004).
[CrossRef]

Ils, P.

P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
[CrossRef]

Johnson, J. C.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B,  107, 8816-8828 (2003).
[CrossRef]

Kawanishi, H.

H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, "Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1??xN," Appl. Phys. Lett. 89, 251107 (2006).
[CrossRef]

Kohl, M.

M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, "One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires," Phys. Rev. Lett. 63, 2124-2127 (1989).
[CrossRef] [PubMed]

Kubota, M.

S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007).
[CrossRef]

Kulakovskii, V. D.

P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
[CrossRef]

Kulik, D.

D. Kulik, H. Htoon, C. K. Shih, and Y. Li, "Photoluminescence properties of single CdS nanorods," J. Appl. Phys. 95, 1056-1063 (2004).
[CrossRef]

Li, Y.

D. Kulik, H. Htoon, C. K. Shih, and Y. Li, "Photoluminescence properties of single CdS nanorods," J. Appl. Phys. 95, 1056-1063 (2004).
[CrossRef]

Lieber, C. M.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Lin, H.-W.

H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, "Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region," Opt. Express 16, 8106-8116 (2008).
[CrossRef] [PubMed]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006).
[CrossRef]

Liu, Z.

C. X. Shan, Z. Liu, and S. K. Hark, "Photoluminescence polarization in individual CdSe nanowires," Phys. Rev. B 74, 153402 (2006).
[CrossRef]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, "Radius-dependent polarization anisotropy in semiconductor nanowires," Phys. Rev. B 72, 161310(R) (2005).
[CrossRef]

McIntyre, C. R.

C. R. McIntyre and L. J. Sham, "Theory of luminescence polarization anisotropy in quantum wires," Phys. Rev. B 45, 9443-9446 (1992).
[CrossRef]

Monemar, B.

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN," Phys. Rev. B 70, 035210 (2004).
[CrossRef]

Morkoç, H.

M. A. Reshchikov and H. Morkoç "Luminescence properties of defects in GaN," J. Appl. Phys. 97, 061301 (2005).
[CrossRef]

Nakagawa, S.

S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007).
[CrossRef]

Niikura, E.

H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, "Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1??xN," Appl. Phys. Lett. 89, 251107 (2006).
[CrossRef]

Ning, C. Z.

A. V. Maslov and C. Z. Ning, "Radius-dependent polarization anisotropy in semiconductor nanowires," Phys. Rev. B 72, 161310(R) (2005).
[CrossRef]

Ohta, H.

S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007).
[CrossRef]

Okamoto, K.

S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007).
[CrossRef]

Paskov, P. P.

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN," Phys. Rev. B 70, 035210 (2004).
[CrossRef]

Paskova, T.

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN," Phys. Rev. B 70, 035210 (2004).
[CrossRef]

Persson, M. P.

M. P. Persson and H. Q. Xu, "Giant polarization anisotropy in optical transitions of free-standing InP nanowires," Phys. Rev. B 70, 161310(R) (2004).
[CrossRef]

Ploog, K.

M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, "One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires," Phys. Rev. Lett. 63, 2124-2127 (1989).
[CrossRef] [PubMed]

Qi, J.

J. Qi, A. M. Belcher, and J. M. White, "Spectroscopy of individual silicon nanowires," Appl. Phys. Lett. 82, 2616-2618 (2003).
[CrossRef]

Reshchikov, M. A.

M. A. Reshchikov and H. Morkoç "Luminescence properties of defects in GaN," J. Appl. Phys. 97, 061301 (2005).
[CrossRef]

Roshko, A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
[CrossRef]

Ruda, H. E.

H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in thick semiconducting nanowires," J. Appl. Phys. 100, 024314 (2006).
[CrossRef]

H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in semiconducting and metallic nanowires," Phys. Rev. B 72, 115308 (2005).
[CrossRef]

Sakaki, H.

H. Akiyama, T. Someya, and H. Sakaki, "Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method," Phys. Rev. B 53, R4229-R4232 (1996).
[CrossRef]

T. Someya, H. Akiyama, and H. Sakaki, "Laterally squeezed excitonic wave function in quantum wires," Phys. Rev. Lett. 74, 3664-3667 (1995).
[CrossRef] [PubMed]

Sanford, N. A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
[CrossRef]

Saykally, R. J.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B,  107, 8816-8828 (2003).
[CrossRef]

Schlager, J. B.

J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
[CrossRef]

Sercel, P. C.

P. C. Sercel and K. J. Vahala, "Polarization dependence of optical absorption and emission in quantum wires," Phys. Rev. B 44, 5681-5691 (1991).
[CrossRef]

P. C. Sercel and K. J. Vahala, "Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects," Appl. Phys. Lett. 57, 545-547 (1990).
[CrossRef]

Sham, L. J.

C. R. McIntyre and L. J. Sham, "Theory of luminescence polarization anisotropy in quantum wires," Phys. Rev. B 45, 9443-9446 (1992).
[CrossRef]

Shan, C. X.

C. X. Shan, Z. Liu, and S. K. Hark, "Photoluminescence polarization in individual CdSe nanowires," Phys. Rev. B 74, 153402 (2006).
[CrossRef]

Shen, C.-H.

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006).
[CrossRef]

Shih, C. K.

D. Kulik, H. Htoon, C. K. Shih, and Y. Li, "Photoluminescence properties of single CdS nanorods," J. Appl. Phys. 95, 1056-1063 (2004).
[CrossRef]

Shik, A.

H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in thick semiconducting nanowires," J. Appl. Phys. 100, 024314 (2006).
[CrossRef]

H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in semiconducting and metallic nanowires," Phys. Rev. B 72, 115308 (2005).
[CrossRef]

Someya, T.

H. Akiyama, T. Someya, and H. Sakaki, "Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method," Phys. Rev. B 53, R4229-R4232 (1996).
[CrossRef]

T. Someya, H. Akiyama, and H. Sakaki, "Laterally squeezed excitonic wave function in quantum wires," Phys. Rev. Lett. 74, 3664-3667 (1995).
[CrossRef] [PubMed]

Takeda, S.

H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, "Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1??xN," Appl. Phys. Lett. 89, 251107 (2006).
[CrossRef]

Tikhodeev, S. G.

P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
[CrossRef]

Tsujimura, H.

S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007).
[CrossRef]

Vahala, K. J.

P. C. Sercel and K. J. Vahala, "Polarization dependence of optical absorption and emission in quantum wires," Phys. Rev. B 44, 5681-5691 (1991).
[CrossRef]

P. C. Sercel and K. J. Vahala, "Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects," Appl. Phys. Lett. 57, 545-547 (1990).
[CrossRef]

Wang, J.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

White, J. M.

J. Qi, A. M. Belcher, and J. M. White, "Spectroscopy of individual silicon nanowires," Appl. Phys. Lett. 82, 2616-2618 (2003).
[CrossRef]

Wu, C.-Y.

Xu, H. Q.

M. P. Persson and H. Q. Xu, "Giant polarization anisotropy in optical transitions of free-standing InP nanowires," Phys. Rev. B 70, 161310(R) (2004).
[CrossRef]

Yamamoto, M.

H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, "Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1??xN," Appl. Phys. Lett. 89, 251107 (2006).
[CrossRef]

Yan, H.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B,  107, 8816-8828 (2003).
[CrossRef]

Yang, P.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B,  107, 8816-8828 (2003).
[CrossRef]

Zunger, A.

M. Califano and A. Zunger, "Anisotropy of interband transitions in InAs quantum wires: An atomistic theory," Phys. Rev. B 70, 165317 (2004).
[CrossRef]

Appl. Phys. Lett. (6)

J. Qi, A. M. Belcher, and J. M. White, "Spectroscopy of individual silicon nanowires," Appl. Phys. Lett. 82, 2616-2618 (2003).
[CrossRef]

P. C. Sercel and K. J. Vahala, "Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects," Appl. Phys. Lett. 57, 545-547 (1990).
[CrossRef]

J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006).
[CrossRef]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006).
[CrossRef]

H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, "Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1??xN," Appl. Phys. Lett. 89, 251107 (2006).
[CrossRef]

S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007).
[CrossRef]

J. Appl. Phys. (3)

M. A. Reshchikov and H. Morkoç "Luminescence properties of defects in GaN," J. Appl. Phys. 97, 061301 (2005).
[CrossRef]

H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in thick semiconducting nanowires," J. Appl. Phys. 100, 024314 (2006).
[CrossRef]

D. Kulik, H. Htoon, C. K. Shih, and Y. Li, "Photoluminescence properties of single CdS nanorods," J. Appl. Phys. 95, 1056-1063 (2004).
[CrossRef]

J. Phys. Chem. B (1)

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B,  107, 8816-8828 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (10)

B. Gil and O. Briot, "Internal structure and oscillator strengths of excitons in strained α-GaN," Phys. Rev. B 55, 2530-2534 (1997).
[CrossRef]

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN," Phys. Rev. B 70, 035210 (2004).
[CrossRef]

C. X. Shan, Z. Liu, and S. K. Hark, "Photoluminescence polarization in individual CdSe nanowires," Phys. Rev. B 74, 153402 (2006).
[CrossRef]

U. Bockelmann and G. Bastard, "Interband absorption in quantum wires. I. Zero-magnetic-field case," Phys. Rev. B 45, 1688-1699 (1992).
[CrossRef]

P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995).
[CrossRef]

H. Akiyama, T. Someya, and H. Sakaki, "Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method," Phys. Rev. B 53, R4229-R4232 (1996).
[CrossRef]

H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in semiconducting and metallic nanowires," Phys. Rev. B 72, 115308 (2005).
[CrossRef]

M. Califano and A. Zunger, "Anisotropy of interband transitions in InAs quantum wires: An atomistic theory," Phys. Rev. B 70, 165317 (2004).
[CrossRef]

P. C. Sercel and K. J. Vahala, "Polarization dependence of optical absorption and emission in quantum wires," Phys. Rev. B 44, 5681-5691 (1991).
[CrossRef]

C. R. McIntyre and L. J. Sham, "Theory of luminescence polarization anisotropy in quantum wires," Phys. Rev. B 45, 9443-9446 (1992).
[CrossRef]

Phys. Rev. Lett. (2)

T. Someya, H. Akiyama, and H. Sakaki, "Laterally squeezed excitonic wave function in quantum wires," Phys. Rev. Lett. 74, 3664-3667 (1995).
[CrossRef] [PubMed]

M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, "One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires," Phys. Rev. Lett. 63, 2124-2127 (1989).
[CrossRef] [PubMed]

Science (1)

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Other (5)

M. P. Persson and H. Q. Xu, "Giant polarization anisotropy in optical transitions of free-standing InP nanowires," Phys. Rev. B 70, 161310(R) (2004).
[CrossRef]

A. V. Maslov and C. Z. Ning, "Radius-dependent polarization anisotropy in semiconductor nanowires," Phys. Rev. B 72, 161310(R) (2005).
[CrossRef]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Elsevier Butterworth-Heinemann, 1984).

V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics (Academic, 1978).

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).

Supplementary Material (1)

» Media 1: MOV (3573 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

FE-SEM images of nanorod manipulation process. (a) Image near the cleavage edge of a Si(111) substrate covered by a vertically aligned array of 2-µm-long GaN nanorods. A tungsten probe is positioned nearby. (b) A tungsten probe attached with a single GaN nanorod by electrostatic interaction. (c) Using this technique, four single, isolated GaN nanorods were positioned on a gold-patterned Si substrate with designated locations and orientations; the inset shows a GaN nanorod with uniform diameter of 35 nm and length of 2 µm. A movie showing the nanorod manipulation process is shown online (Media 1).

Fig. 2.
Fig. 2.

Photoluminescence spectra of single GaN nanorods at room temperature measured with the k excc geometry. (a) Dependence on the optical absorption polarization. The inset shows the FE-SEM image of the measured GaN (#R1) nanorod with a diameter of 40 nm. (b) and (c) show the polarized PL spectra with the electric field of optical excitation parallel and perpendicular to the c-axis, respectively. The measured polarization ratios are 0.9 and 0.84, respectively. (d) Polarization ratio measured from another GaN nanorod (#R3) using the same experimental configuration. The diameter of #R3 GaN nanorod is 80 nm, as shown in the inset.

Fig. 3.
Fig. 3.

Size dependence of polarized photoluminescence from single GaN nanorods (k excc). (a) The peak energies of PL from single GaN nanorods with different rod diameters. The dashed lines show the averaged values of peak energy with two PL polarizations. (b) The polarization ratio of PL from single GaN nanorods with different diameters using the measurement configuration that the electric field of excitation is parallel to the c-axis. The dashed line is the calculated result considering dielectric confinement of optical electric field with ε=6 and isotropic internal emissions (see text for details).

Fig. 4.
Fig. 4.

Numerical results for simulating the effects of optical (dielectric) confinement. (a) Results obtained by varying dielectric constants; (b) Results obtained by varying ratios of internal dipole moment along two orthogonal directions.

Fig. 5.
Fig. 5.

Numerical results of polarization ratio using the dielectric confinement model. (a) Results obtained by varying dielectric constants for GaN nanorods; (b) Result obtained by using (β,ε)=(1.5,6.5).

Fig. 6.
Fig. 6.

(a) FE-SEM images of four different GaN bundles, among which the #V5 GaN bundle stands vertically on the Si substrate. (b) Photoluminescence spectra of GaN bundles at low temperature (~10 K). For clarity, the inset shows the PL spectra in semi-logarithm scale.

Fig. 7.
Fig. 7.

Measurement of polarized photoluminescence from the #R1 GaN nanorod at low temperature (~20 K). The inset shows the corresponding PL peak positions in the plot of normalized intensity. Comparing with the room-temperature measurement on the same nanorod, the polarization ratio at low temperature is completely quenched due to the much enhanced anisotropy of internal emissions due to the neutral-donor-bound excitons.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 r r ( r E i r ) + 1 r 2 2 E i ϕ 2 + 2 E i z 2 + ε ω 2 c 2 E i = 0 ,
I // I = 2 d z 2 + d x 2 3 d x 2 ,
ρ = I // I I // + I = d z 2 d x 2 d z 2 + 2 d x 2 .
ρ = A z 2 A x 2 A z 2 + 2 A x 2 ρ 0 .

Metrics