Abstract

A subwavelength-diameter tapered optical fiber coated with gelatin layer for fast relative humidity (RH) sensing is reported. The sensing element is composed of a 680-nm-diameter fiber taper coated with a 80-nm-thickness 8-mm-length gelatin layer, and is operated at a wavelength of 1550 nm. When exposed to moisture, the change in refractive index of the gelatin layer changes the mode field of the guided mode of the coated fiber, and converts a portion of power from guided mode to radiation mode, resulting in RH-dependent loss for optical sensing. The sensor is operated within a wide humidity range (9–94% RH) with high sensitivity and good reversibility. Measured response time is about 70 ms, which is one or two orders of magnitude faster than other types of RH sensors relying on conventional optical fibers or films.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Narayanaswamy and O. S. Wolfbeis, Optical Sensors: Industrial, Environmental and Diagnostic Aapplications (Springer-Verlag, Berlin Heidelberg, 2004), Chap. 11.
  2. E. Udd, Fiber Optical Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).
  3. A. P. Russell and K. S. Fletcher, "Optical sensor for the determination of moisture," Anal. Chim. Acta 170, 209-216 (1985).
    [CrossRef]
  4. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, "An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity," Sens. Actuators B 104, 217-222 (2005).
    [CrossRef]
  5. D. C. Bownass, J. S. Barton and J. D. C. Jones, "Detection of high humidity by optical fibre sensing at telecommunications wavelengths," Opt. Commun. 146, 90-94 (1998).
    [CrossRef]
  6. C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuators B 69, 127-131 (2000).
    [CrossRef]
  7. I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, "Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings," IEEE Sens. J. 7, 89-95 (2007).
    [CrossRef]
  8. M. M. F. Choi and O. L. Tse, "Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film," Anal. Chim. Acta 378, 127-134 (1999).
    [CrossRef]
  9. O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagha and B. D. MacCraith, "Development of a fluorescence lifetime-based sol-gel humidity sensor," Anal. Chim. Acta 570, 15-20 (2006).
    [CrossRef]
  10. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  11. L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  12. J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
    [CrossRef] [PubMed]
  13. J. Villatoro and D. Monzón-Hernández, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005).
    [CrossRef] [PubMed]
  14. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005).
    [CrossRef] [PubMed]
  15. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  16. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The microfiber loop resonator: Theory, experiment, and application," J. Lightwave Technol. 24, 242-250 (2006).
    [CrossRef]
  17. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 19952-11958 (2007).
    [CrossRef]
  18. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor," Optics Express 15, 14376-14381 (2007).
    [CrossRef] [PubMed]
  19. L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
    [CrossRef]
  20. S. S. Wang, X. Y. Pan, L. M. Tong, "Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing," Opt. Commun. 276, 293-297 (2007).
    [CrossRef]
  21. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, "An embedded optical nanowire loop resonator refractometric sensor," Opt. Express 16, 1062-1067 (2008).
    [CrossRef] [PubMed]
  22. M. Sumetsky, "Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators," J. Lightwave Technol. 26, 21-27 (2008).
    [CrossRef]
  23. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  24. J. Y. Lou, L. M. Tong and Z. Z. Ye, "Dispersion shifts in optical nanowires with thin dielectric coatings," Opt. Express 14, 6993-6998 (2006).
    [CrossRef] [PubMed]
  25. J. M. Goddard and J. H. Hotchkiss, "Polymer surface modification for the attachment of bioactive compounds," Prog. Polym. Sci. 32, 698-725 (2007).
    [CrossRef]

2008 (2)

2007 (6)

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, "Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings," IEEE Sens. J. 7, 89-95 (2007).
[CrossRef]

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 19952-11958 (2007).
[CrossRef]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor," Optics Express 15, 14376-14381 (2007).
[CrossRef] [PubMed]

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

S. S. Wang, X. Y. Pan, L. M. Tong, "Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing," Opt. Commun. 276, 293-297 (2007).
[CrossRef]

J. M. Goddard and J. H. Hotchkiss, "Polymer surface modification for the attachment of bioactive compounds," Prog. Polym. Sci. 32, 698-725 (2007).
[CrossRef]

2006 (3)

2005 (5)

2004 (1)

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

2000 (1)

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuators B 69, 127-131 (2000).
[CrossRef]

1999 (1)

M. M. F. Choi and O. L. Tse, "Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film," Anal. Chim. Acta 378, 127-134 (1999).
[CrossRef]

1998 (1)

D. C. Bownass, J. S. Barton and J. D. C. Jones, "Detection of high humidity by optical fibre sensing at telecommunications wavelengths," Opt. Commun. 146, 90-94 (1998).
[CrossRef]

1985 (1)

A. P. Russell and K. S. Fletcher, "Optical sensor for the determination of moisture," Anal. Chim. Acta 170, 209-216 (1985).
[CrossRef]

Arregui, F. J.

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, "Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings," IEEE Sens. J. 7, 89-95 (2007).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuators B 69, 127-131 (2000).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Bariain, C.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuators B 69, 127-131 (2000).
[CrossRef]

Barton, J. S.

D. C. Bownass, J. S. Barton and J. D. C. Jones, "Detection of high humidity by optical fibre sensing at telecommunications wavelengths," Opt. Commun. 146, 90-94 (1998).
[CrossRef]

Bownass, D. C.

D. C. Bownass, J. S. Barton and J. D. C. Jones, "Detection of high humidity by optical fibre sensing at telecommunications wavelengths," Opt. Commun. 146, 90-94 (1998).
[CrossRef]

Brambilla, G.

Bravo, J.

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, "Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings," IEEE Sens. J. 7, 89-95 (2007).
[CrossRef]

Chen, X. F.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Choi, M. M. F.

M. M. F. Choi and O. L. Tse, "Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film," Anal. Chim. Acta 378, 127-134 (1999).
[CrossRef]

Corres, J. M.

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, "Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings," IEEE Sens. J. 7, 89-95 (2007).
[CrossRef]

DiGiovanni, D. J.

Dulashko, Y.

Fan, X.

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor," Optics Express 15, 14376-14381 (2007).
[CrossRef] [PubMed]

Finazzi, V.

Fini, J. M.

Fletcher, K. S.

A. P. Russell and K. S. Fletcher, "Optical sensor for the determination of moisture," Anal. Chim. Acta 170, 209-216 (1985).
[CrossRef]

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Goddard, J. M.

J. M. Goddard and J. H. Hotchkiss, "Polymer surface modification for the attachment of bioactive compounds," Prog. Polym. Sci. 32, 698-725 (2007).
[CrossRef]

Guckian, A.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagha and B. D. MacCraith, "Development of a fluorescence lifetime-based sol-gel humidity sensor," Anal. Chim. Acta 570, 15-20 (2006).
[CrossRef]

Hale, A.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Hotchkiss, J. H.

J. M. Goddard and J. H. Hotchkiss, "Polymer surface modification for the attachment of bioactive compounds," Prog. Polym. Sci. 32, 698-725 (2007).
[CrossRef]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Jones, J. D. C.

D. C. Bownass, J. S. Barton and J. D. C. Jones, "Detection of high humidity by optical fibre sensing at telecommunications wavelengths," Opt. Commun. 146, 90-94 (1998).
[CrossRef]

Khijwania, S. K.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, "An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity," Sens. Actuators B 104, 217-222 (2005).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lopez-Amo, M.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuators B 69, 127-131 (2000).
[CrossRef]

Lou, J. Y.

MacCraith, B. D.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagha and B. D. MacCraith, "Development of a fluorescence lifetime-based sol-gel humidity sensor," Anal. Chim. Acta 570, 15-20 (2006).
[CrossRef]

Mansuripur, M.

Matias, I. R.

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, "Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings," IEEE Sens. J. 7, 89-95 (2007).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuators B 69, 127-131 (2000).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

McDonagha, C.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagha and B. D. MacCraith, "Development of a fluorescence lifetime-based sol-gel humidity sensor," Anal. Chim. Acta 570, 15-20 (2006).
[CrossRef]

McEvoy, A. K.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagha and B. D. MacCraith, "Development of a fluorescence lifetime-based sol-gel humidity sensor," Anal. Chim. Acta 570, 15-20 (2006).
[CrossRef]

McGaughey, O.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagha and B. D. MacCraith, "Development of a fluorescence lifetime-based sol-gel humidity sensor," Anal. Chim. Acta 570, 15-20 (2006).
[CrossRef]

Meschede, D.

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 19952-11958 (2007).
[CrossRef]

Monzón-Hernández, D.

Pan, X. Y.

S. S. Wang, X. Y. Pan, L. M. Tong, "Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing," Opt. Commun. 276, 293-297 (2007).
[CrossRef]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Pruneri, V.

Rauschenbeutel, A.

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 19952-11958 (2007).
[CrossRef]

Ros-Lis, J. V.

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagha and B. D. MacCraith, "Development of a fluorescence lifetime-based sol-gel humidity sensor," Anal. Chim. Acta 570, 15-20 (2006).
[CrossRef]

Russell, A. P.

A. P. Russell and K. S. Fletcher, "Optical sensor for the determination of moisture," Anal. Chim. Acta 170, 209-216 (1985).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Shi, L.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Singh, J. P.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, "An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity," Sens. Actuators B 104, 217-222 (2005).
[CrossRef]

Sokolowski, M.

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 19952-11958 (2007).
[CrossRef]

Srinivasan, K. L.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, "An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity," Sens. Actuators B 104, 217-222 (2005).
[CrossRef]

Sumetsky, M.

Tan, W.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Tong, L. M.

S. S. Wang, X. Y. Pan, L. M. Tong, "Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing," Opt. Commun. 276, 293-297 (2007).
[CrossRef]

J. Y. Lou, L. M. Tong and Z. Z. Ye, "Dispersion shifts in optical nanowires with thin dielectric coatings," Opt. Express 14, 6993-6998 (2006).
[CrossRef] [PubMed]

J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Tse, O. L.

M. M. F. Choi and O. L. Tse, "Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film," Anal. Chim. Acta 378, 127-134 (1999).
[CrossRef]

Vetsch, E.

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 19952-11958 (2007).
[CrossRef]

Villatoro, J.

Wang, S. S.

S. S. Wang, X. Y. Pan, L. M. Tong, "Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing," Opt. Commun. 276, 293-297 (2007).
[CrossRef]

Warken, F.

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 19952-11958 (2007).
[CrossRef]

Windeler, R. S.

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor," Optics Express 15, 14376-14381 (2007).
[CrossRef] [PubMed]

Xu, F.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Xu, Y. H.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Ye, Z. Z.

Anal. Chim. Acta (3)

A. P. Russell and K. S. Fletcher, "Optical sensor for the determination of moisture," Anal. Chim. Acta 170, 209-216 (1985).
[CrossRef]

M. M. F. Choi and O. L. Tse, "Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film," Anal. Chim. Acta 378, 127-134 (1999).
[CrossRef]

O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagha and B. D. MacCraith, "Development of a fluorescence lifetime-based sol-gel humidity sensor," Anal. Chim. Acta 570, 15-20 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

IEEE Sens. J. (1)

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, "Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings," IEEE Sens. J. 7, 89-95 (2007).
[CrossRef]

J. Lightwave Technol. (2)

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

S. S. Wang, X. Y. Pan, L. M. Tong, "Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing," Opt. Commun. 276, 293-297 (2007).
[CrossRef]

D. C. Bownass, J. S. Barton and J. D. C. Jones, "Detection of high humidity by optical fibre sensing at telecommunications wavelengths," Opt. Commun. 146, 90-94 (1998).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Optics Express (1)

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor," Optics Express 15, 14376-14381 (2007).
[CrossRef] [PubMed]

Prog. Polym. Sci. (1)

J. M. Goddard and J. H. Hotchkiss, "Polymer surface modification for the attachment of bioactive compounds," Prog. Polym. Sci. 32, 698-725 (2007).
[CrossRef]

Sens. Actuators B (2)

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, "An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity," Sens. Actuators B 104, 217-222 (2005).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, "Optical fiber humidity sensor based on a tapered fiber coated with agarose gel," Sens. Actuators B 69, 127-131 (2000).
[CrossRef]

Sensors (1)

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, "Simulation of optical microfiber loop resonators for ambient refractive index sensing," Sensors 7, 689-696 (2007).
[CrossRef]

Other (3)

R. Narayanaswamy and O. S. Wolfbeis, Optical Sensors: Industrial, Environmental and Diagnostic Aapplications (Springer-Verlag, Berlin Heidelberg, 2004), Chap. 11.

E. Udd, Fiber Optical Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of a single-mode tapered fiber for RH sensing.

Fig. 2.
Fig. 2.

Calculated Ponyting vector of a 80-nm-thickness gelatin (n=1.50) coated 680-nm-diameter silica fiber (n=1.44) operating at 1550-nm wavelength. The calculation is performed in a cylindrical coordinate, in which abscissa r represents the radial direction on the cross section of the fiber. Inset: a SEM image of the gelatin coated tapered fiber.

Fig. 3.
Fig. 3.

The transmitted light intensity of the sensor at 1550 nm wavelength in the range of 9–94 % RH.

Fig. 4.
Fig. 4.

(a). Typical time-dependent transmittance of the sensor reveals the response time of about 70 ms when RH jumps from 75 to 88%. (b) Reversible response of the sensor tested by alternately cycling 75%- and 88%- RH airs.

Metrics