Abstract

We demonstrate an all-single mode structure which enables continuous phase matching of difference frequency generated THz light from the near-IR. This structure provides a long interaction length by way of well-confined collinear propagation of pumps and product without diffraction, resulting in high conversion efficiency. A LiNbO3 version of this structure achieved a power-normalized conversion efficiency of 1.3×10-7 W-1 - some 23 times larger than the largest previously reported results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, "THz wave generation in quasi phase matched GaAs," Appl. Phys. Lett. 89, 141119-1-3 (2006).
    [CrossRef]
  2. D. E. Thompson and P. D. Coleman, "Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides," IEEE Trans. Microwave Theory Tech.MTT - 22, 995-1000 (1974).
    [CrossRef]
  3. W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435-4437 (2003).
    [CrossRef]
  4. Y. Takushima, S. Y. Shin, and Y. C. Chung, "Design of a LiNbO3 ribbon waveguide for efficient difference frequency generation of THz wave in the collinear configuration," Opt. Express 15, 14783-14792 (2007).
    [CrossRef] [PubMed]
  5. V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
    [CrossRef]
  6. H. Cao, R. Linke, and A. Nahata, "Broadband generation of THz radiation in a waveguide," Opt. Lett. 29, 1751-1753 (2004).
    [CrossRef] [PubMed]
  7. J. J. Veselka and S. K. Korotky, "Optimization of Ti:LiNbO3 optical waveguides and directional coupler switches for 1.56 μm wavelength," IEEE J. Quantum Electron. QE-22,933-938 (1986).
    [CrossRef]
  8. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).
  9. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988).
  10. G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
    [CrossRef]
  11. G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
    [CrossRef]
  12. G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Opt. Commun. 163, 95-101 (1999).
    [CrossRef]
  13. M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-604 (1999).
    [CrossRef]
  14. E. E. Russell and E. E. Bell, "Measurement of the optical constants of crystal quartz in the far infrared with the asymmetric fourier-transform method," J. Opt. Soc. Am. 57, 341-348 (1967).
    [CrossRef]
  15. J. Ashok, P. L. H. Varaprasad, J. R. Birch, "Polyethylene (C2H4)n," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic Press, Boston, 1991).
  16. L. McCaughan, C. M. Staus, and T. F. Kuech, "Coherent Terahertz Radiation Source," pending patent (filed 12/28/06).
  17. C. Staus, R. Suess, and L. McCaughan, "Laser-induced fracturing: an alternative to mechanical polishing and patterning of LiNbO3 integrated optic chips," J. Lightwave Technol. 22, 1327-1330 (2004).
    [CrossRef]
  18. H. C. CaseyJr. and M. B. Panish, Heterostructure lasers, Pt. B, Materials and operating characteristics (Academic Press, New York, 1978).
  19. W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
    [CrossRef]
  20. G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, "Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
    [CrossRef]
  21. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18 - 5.27 THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
    [CrossRef]
  22. W. Shi and Y. J. Ding, "Continuously tunable and coherent THz radiation by means of phase matched DFG in ZnGeP2," Appl. Phys. Lett. 83, 848-850 (2003).
    [CrossRef]
  23. T. Taniuchi and H. Nakanishi, "Continuously tunable terahertz-wave generation in GaP crystal by collinear difference frequency mixing," Electron. Lett. 40, 327-328 (2004).
    [CrossRef]
  24. W. Shi, M. Leigh, J. Zong, and S. Jiang, "Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal," Opt. Lett. 32,949-951 (2007).
    [CrossRef] [PubMed]
  25. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, "Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs," Opt. Lett. 32, 1284-1286 (2007).
    [CrossRef] [PubMed]
  26. Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41,712-713 (2005).
    [CrossRef]
  27. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
    [CrossRef]

2007 (3)

2006 (1)

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

2005 (1)

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41,712-713 (2005).
[CrossRef]

2004 (5)

T. Taniuchi and H. Nakanishi, "Continuously tunable terahertz-wave generation in GaP crystal by collinear difference frequency mixing," Electron. Lett. 40, 327-328 (2004).
[CrossRef]

C. Staus, R. Suess, and L. McCaughan, "Laser-induced fracturing: an alternative to mechanical polishing and patterning of LiNbO3 integrated optic chips," J. Lightwave Technol. 22, 1327-1330 (2004).
[CrossRef]

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
[CrossRef]

H. Cao, R. Linke, and A. Nahata, "Broadband generation of THz radiation in a waveguide," Opt. Lett. 29, 1751-1753 (2004).
[CrossRef] [PubMed]

2003 (2)

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435-4437 (2003).
[CrossRef]

W. Shi and Y. J. Ding, "Continuously tunable and coherent THz radiation by means of phase matched DFG in ZnGeP2," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

2002 (1)

1999 (2)

G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Opt. Commun. 163, 95-101 (1999).
[CrossRef]

M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-604 (1999).
[CrossRef]

1986 (1)

J. J. Veselka and S. K. Korotky, "Optimization of Ti:LiNbO3 optical waveguides and directional coupler switches for 1.56 μm wavelength," IEEE J. Quantum Electron. QE-22,933-938 (1986).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

1974 (1)

D. E. Thompson and P. D. Coleman, "Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides," IEEE Trans. Microwave Theory Tech.MTT - 22, 995-1000 (1974).
[CrossRef]

1972 (1)

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, "Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

1971 (1)

G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
[CrossRef]

1967 (1)

Bell, E. E.

Berger, V.

V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
[CrossRef]

Boyd, G. D.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, "Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, "Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
[CrossRef]

Buehler, E.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, "Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

Cao, H.

Chung, Y. C.

Coleman, P. D.

D. E. Thompson and P. D. Coleman, "Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides," IEEE Trans. Microwave Theory Tech.MTT - 22, 995-1000 (1974).
[CrossRef]

Ding, Y. J.

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435-4437 (2003).
[CrossRef]

W. Shi and Y. J. Ding, "Continuously tunable and coherent THz radiation by means of phase matched DFG in ZnGeP2," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18 - 5.27 THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Fejer, M. M.

Fernelius, N.

Ghosh, G.

G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Opt. Commun. 163, 95-101 (1999).
[CrossRef]

Helm, H.

M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-604 (1999).
[CrossRef]

Ito, H.

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41,712-713 (2005).
[CrossRef]

Jiang, S.

Keiding, S. R.

M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-604 (1999).
[CrossRef]

Korotky, S. K.

J. J. Veselka and S. K. Korotky, "Optimization of Ti:LiNbO3 optical waveguides and directional coupler switches for 1.56 μm wavelength," IEEE J. Quantum Electron. QE-22,933-938 (1986).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Leigh, M.

Linke, R.

McCaughan, L.

Nahata, A.

Nakanishi, H.

T. Taniuchi and H. Nakanishi, "Continuously tunable terahertz-wave generation in GaP crystal by collinear difference frequency mixing," Electron. Lett. 40, 327-328 (2004).
[CrossRef]

Nishizawa, J.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Oyama, Y.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Patel, C. K. N.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, "Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

Pollack, M. A.

G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
[CrossRef]

Russell, E. E.

Sasaki, T.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Sasaki, Y.

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41,712-713 (2005).
[CrossRef]

Schaar, J. E.

Schall, M.

M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-604 (1999).
[CrossRef]

Schunemann, P. G.

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

Shi, W.

W. Shi, M. Leigh, J. Zong, and S. Jiang, "Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal," Opt. Lett. 32,949-951 (2007).
[CrossRef] [PubMed]

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

W. Shi and Y. J. Ding, "Continuously tunable and coherent THz radiation by means of phase matched DFG in ZnGeP2," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435-4437 (2003).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18 - 5.27 THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

Shin, S. Y.

Sirtori, C.

V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
[CrossRef]

Staus, C.

Suess, R.

Suto, K.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Takushima, Y.

Tanabe, T.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Taniuchi, T.

T. Taniuchi and H. Nakanishi, "Continuously tunable terahertz-wave generation in GaP crystal by collinear difference frequency mixing," Electron. Lett. 40, 327-328 (2004).
[CrossRef]

Thompson, D. E.

D. E. Thompson and P. D. Coleman, "Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides," IEEE Trans. Microwave Theory Tech.MTT - 22, 995-1000 (1974).
[CrossRef]

Turner, E. H.

G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
[CrossRef]

Veselka, J. J.

J. J. Veselka and S. K. Korotky, "Optimization of Ti:LiNbO3 optical waveguides and directional coupler switches for 1.56 μm wavelength," IEEE J. Quantum Electron. QE-22,933-938 (1986).
[CrossRef]

Vodopyanov, K.

Vodopyanov, K. L.

Watanabe, Y.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Yokoyama, H.

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41,712-713 (2005).
[CrossRef]

Zong, J.

Appl. Phys. Lett. (3)

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435-4437 (2003).
[CrossRef]

W. Shi and Y. J. Ding, "Continuously tunable and coherent THz radiation by means of phase matched DFG in ZnGeP2," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, "Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

Electron. Lett. (2)

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41,712-713 (2005).
[CrossRef]

T. Taniuchi and H. Nakanishi, "Continuously tunable terahertz-wave generation in GaP crystal by collinear difference frequency mixing," Electron. Lett. 40, 327-328 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. J. Veselka and S. K. Korotky, "Optimization of Ti:LiNbO3 optical waveguides and directional coupler switches for 1.56 μm wavelength," IEEE J. Quantum Electron. QE-22,933-938 (1986).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama," Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photonics Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-604 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

MTT (1)

D. E. Thompson and P. D. Coleman, "Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides," IEEE Trans. Microwave Theory Tech.MTT - 22, 995-1000 (1974).
[CrossRef]

Opt. Commun. (2)

G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Opt. Commun. 163, 95-101 (1999).
[CrossRef]

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
[CrossRef]

Semicond. Sci. Technol. (1)

V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
[CrossRef]

Other (6)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, "THz wave generation in quasi phase matched GaAs," Appl. Phys. Lett. 89, 141119-1-3 (2006).
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).

P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988).

H. C. CaseyJr. and M. B. Panish, Heterostructure lasers, Pt. B, Materials and operating characteristics (Academic Press, New York, 1978).

J. Ashok, P. L. H. Varaprasad, J. R. Birch, "Polyethylene (C2H4)n," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic Press, Boston, 1991).

L. McCaughan, C. M. Staus, and T. F. Kuech, "Coherent Terahertz Radiation Source," pending patent (filed 12/28/06).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Diagram of the LiNbO3 embedded waveguide structure. The two pumps are confined in a Ti:LiNbO3 channel waveguide. The THz waveguide is formed by the LiNbO3 film, quartz, and polyethylene ridge. The c-axis of the LiNbO3 film is oriented along the x direction.

Fig. 2.
Fig. 2.

(a). Diagram of the 1-D version of the embedded waveguide structure. (b) Calculated THz output power as a function of LiNbO3 thickness and THz frequency. The wavelength of the lower frequency pump was fixed at λ 2=1.5546 µm. The two pump powers were approximated as P 1=P 2 50 kW/m and the embedded waveguide length was chosen to be L=10 mm.

Fig. 3.
Fig. 3.

Backlit microscope image of the polished end face of the embedded waveguide structure: quartz/14 µm thick LiNbO3/quartz. The diffused titanium LiNbO3 channel waveguides appear as bright spots in the image.

Fig. 4.
Fig. 4.

Experimental setup used to characterize THz DFG of the embedded waveguide structure. Optical components: External cavity laser diode (ECLD); distributed feedback laser (DFB); fiber optic polarization controller (PC); erbium doped fiber amplifier (EDFA); optical spectrum analyzer (OSA). Optical components interconnected with stabilized single mode optical fiber.

Fig. 5.
Fig. 5.

TM electric field profiles of (a) the Ti:LiNbO3 waveguide at λ 2=1.5546 µm, and (b) the 1.325 THz (λ3=226 µm) mode. The peak electric field amplitude is normalized to 1 in both plots. Both waveguides are single mode.

Fig. 6.
Fig. 6.

Measured and calculated output power from the LiNbO3 embedded waveguide structure vs. frequency for 760 mW CW near-IR pumps. Note that the measured power spectrum was taken from the embedded waveguide structure with a 14 µm thick LiNbO3 film. The model calculation was based on an identical structure with a 15 µm thick LiNbO3 film.

Tables (1)

Tables Icon

Table 1. Real (n) and imaginary (k) parts of the refractive index for quartz, LiNbO3, and HDPE at a near-infrared wavelength of 1.5 µm and a far-infrared wavelength of 214 µm (1.4 THz)[11–15].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η p = ω 3 2 ε o 2 4 ( α 3 2 + Δ β 2 ) Ω 2 d eff E 1 t E 2 t * E 3 t dx dy 2 ( exp ( 2 α 3 L ) 2 exp ( α 3 L ) cos ( Δ β L ) + 1 )

Metrics