Abstract

An optical compensation principle of the crossed circular polarizers is developed to widen the viewing angle of high-transmittance multi-domain vertical-alignment liquid crystal displays (MVA-LCDs). The optical properties of a biaxial film are analyzed by the Berreman 4×4 matrix method, and the analytical solution for the slow-axis orientation of a biaxial film is calculated to obtain the compensation principle of the crossed circular polarizers. Based on this compensation principle, the high-transmittance MVA-LCD theoretically has a complete 80° viewing cone for contrast ratio (CR)>100:1 and experimental results reveal that the compensated high-transmittance MVA-LCD can achieve a viewing angle of over the entire 80° viewing cone for CR>20:1. Practical application as a mobile display is emphasized.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extraordinarily wide-view and wide spectral bandwidth transflective liquid-crystal displays

Chi-Huang Lin, Ru-Hsien Chiang, Ming-Li He, and Chia-Wei Chen
Opt. Express 18(5) 4601-4608 (2010)

Extraordinarily wide-view circular polarizers for liquid crystal displays

Zhibing Ge, Ruibo Lu, Thomas X. Wu, Shin-Tson Wu, Chao-Lien Lin, Nai-Chin Hsu, Wang-Yang Li, and Chung-Kuang Wei
Opt. Express 16(5) 3120-3129 (2008)

Wide-view circular polarizer consisting of a linear polarizer and two biaxial films

Qi Hong, Thomas X. Wu, Ruibo Lu, and Shin-Tson Wu
Opt. Express 13(26) 10777-10783 (2005)

References

  • View by:
  • |
  • |
  • |

  1. H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
    [Crossref]
  2. Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13, 10777–10783 (200 5), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10777.
    [Crossref] [PubMed]
  3. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13, 8318–8331 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8318.
    [Crossref] [PubMed]
  4. Z. Ge, R. Lu, T. X. Wu, S. T. Wu, C. L. Lin, N. C. Hsu, W. Y. Li, and C. K. Wei, “Extraordinarily wide-view circular polarizers for liquid crystal displays,” Opt. Express 16, 3120–3129 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3120.
    [Crossref] [PubMed]
  5. C. H. Lin, “Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays,” Appl. Phys. Lett. 90, 151112 (2007).
    [Crossref]
  6. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am.62, 502–510 (1972). D. W. Berreman, “Optics in smoothly varying anisotropic planar structures: Application to liquid crystal twist cells,” J. Opt. Soc. Am. 63, 1374–1380 (1973).
    [Crossref]
  7. C. Oldano, “Electromagnetic-wave propagation in anisotropic stratified media,” Phys. Rev. A 40, 6014–6020 (1989).
    [Crossref] [PubMed]
  8. M. Schubert, “Polarization-independent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
    [Crossref]
  9. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 572767–2769 (1990).
    [Crossref]
  10. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72, 507–513 (1982).
    [Crossref]
  11. P. Yeh and C. Gu, Optis Of Liquid Crystal Displays (Wiley, New York, 1999).
  12. T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, “A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs,” Proc. of IDW’02 485–488 (2002).
  13. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37, 4822–4828 (1998).
    [Crossref]
  14. Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers,  22, 739–742 (1991).

2008 (1)

2007 (1)

C. H. Lin, “Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays,” Appl. Phys. Lett. 90, 151112 (2007).
[Crossref]

2005 (1)

2004 (1)

H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
[Crossref]

1998 (1)

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37, 4822–4828 (1998).
[Crossref]

1996 (1)

M. Schubert, “Polarization-independent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[Crossref]

1991 (1)

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers,  22, 739–742 (1991).

1990 (1)

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 572767–2769 (1990).
[Crossref]

1989 (1)

C. Oldano, “Electromagnetic-wave propagation in anisotropic stratified media,” Phys. Rev. A 40, 6014–6020 (1989).
[Crossref] [PubMed]

1982 (1)

Berreman, D. W.

D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am.62, 502–510 (1972). D. W. Berreman, “Optics in smoothly varying anisotropic planar structures: Application to liquid crystal twist cells,” J. Opt. Soc. Am. 63, 1374–1380 (1973).
[Crossref]

Fujimura, Y.

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers,  22, 739–742 (1991).

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, “A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs,” Proc. of IDW’02 485–488 (2002).

Ge, Z.

Gu, C.

P. Yeh and C. Gu, Optis Of Liquid Crystal Displays (Wiley, New York, 1999).

Hong, Q.

Hsu, N. C.

Ishinabe, T.

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, “A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs,” Proc. of IDW’02 485–488 (2002).

Kimura, S.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37, 4822–4828 (1998).
[Crossref]

Koike, Y.

H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
[Crossref]

Kusafuka, K.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37, 4822–4828 (1998).
[Crossref]

Li, W. Y.

Lien, A.

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 572767–2769 (1990).
[Crossref]

Lin, C. H.

C. H. Lin, “Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays,” Appl. Phys. Lett. 90, 151112 (2007).
[Crossref]

Lin, C. L.

Lu, R.

Miyashita, T.

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, “A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs,” Proc. of IDW’02 485–488 (2002).

Nagatsuka, T.

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers,  22, 739–742 (1991).

Okamoto, K.

H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
[Crossref]

Oldano, C.

C. Oldano, “Electromagnetic-wave propagation in anisotropic stratified media,” Phys. Rev. A 40, 6014–6020 (1989).
[Crossref] [PubMed]

Saitoh, Y.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37, 4822–4828 (1998).
[Crossref]

Schubert, M.

M. Schubert, “Polarization-independent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[Crossref]

Shimizu, H.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37, 4822–4828 (1998).
[Crossref]

Shimomura, T.

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers,  22, 739–742 (1991).

Sukenori, H.

H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
[Crossref]

Tanaka, Y.

H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
[Crossref]

Tasaka, Y.

H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
[Crossref]

Uchida, T.

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, “A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs,” Proc. of IDW’02 485–488 (2002).

Wei, C. K.

Wu, S. T.

Wu, T. X.

Yeh, P.

P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72, 507–513 (1982).
[Crossref]

P. Yeh and C. Gu, Optis Of Liquid Crystal Displays (Wiley, New York, 1999).

Yoshida, H.

H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
[Crossref]

Yoshimi, H.

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers,  22, 739–742 (1991).

Zhu, X.

Appl. Phys. Lett. (2)

C. H. Lin, “Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays,” Appl. Phys. Lett. 90, 151112 (2007).
[Crossref]

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 572767–2769 (1990).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37, 4822–4828 (1998).
[Crossref]

Opt. Express (3)

Phys. Rev. A (1)

C. Oldano, “Electromagnetic-wave propagation in anisotropic stratified media,” Phys. Rev. A 40, 6014–6020 (1989).
[Crossref] [PubMed]

Phys. Rev. B (1)

M. Schubert, “Polarization-independent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[Crossref]

SID Int. Symp. Digest Tech. Papers (2)

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers,  22, 739–742 (1991).

H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for Notebook or Mobile PCs with High Transmittance, High Contrast Ratio, and Wide Angle Viewing,” SID Int. Symp. Digest Tech. Papers 35, 6–9 (2004).
[Crossref]

Other (3)

D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am.62, 502–510 (1972). D. W. Berreman, “Optics in smoothly varying anisotropic planar structures: Application to liquid crystal twist cells,” J. Opt. Soc. Am. 63, 1374–1380 (1973).
[Crossref]

P. Yeh and C. Gu, Optis Of Liquid Crystal Displays (Wiley, New York, 1999).

T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, “A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs,” Proc. of IDW’02 485–488 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Basic cell configuration of compensated high-transmittance MVA-LCD.

Fig. 2.
Fig. 2.

(a) Principal coordinate system of biaxial film (X,Y,Z) and wavevector k⃑ coordinate system (x’,y’,z’). D 1, D 2 and Δψ are two eigenstates and the slow-axis shift angle of the biaxial film, respectively, for incident light. (b) Curves of slow-axis shift angle Δψ of biaxial films with different Nz for off-axis light at viewing direction ϕ=45°. Refractive indices of biaxial films, n1 and n2, in the range 1.5~1.65 and n1-n2>0.001 are used for the calculation. Error bars represent the range for the calculation results of Δψ.

Fig. 3.
Fig. 3.

(a) Poincaré sphere representation (as seen from north pole) of orientation of slow axes of crossed λ/4 plates at ϕ=45° and ϕ=-45°. (b) Calculations of the included angle of slow axes of crossed λ/4 plates based on proposed principle for off-axis light. Refractive indices of biaxial films, n1 and n2, in the range 1.5~1.65 and n1-n2>0.001 are used for the calculation. Error bars represent the range for the calculation results of the included angle of the crossed λ/4 plates.

Fig. 4.
Fig. 4.

Viewing angle characteristic of simulated iso-CR curves of high-transmittance MVALCD for the crossed circular polarizers with (Nz_λ/2, Nz_λ/4, Nz’_λ/4)=(a) (0.5, 0, 1), (b) (0.5, 0.3, 0.7) and (c) (0.5, 0.5, 0.5), respectively. (d) Viewing angle characteristic of experimental iso-CR curves of high-transmittance MVA-LCD for the crossed circular polarizers with (Nz_λ/2, Nz_λ/4, Nz’_λ/4)=(0.5, 0.5, 0.5).

Fig. 5.
Fig. 5.

Maximum light leakage of the compensated crossed circular polarizers with (Nz_λ/2, Nz_λ/4, Nz’_λ/4)=(a) (0.5, 0, 1), (b) (0.5, 0.3, 0.7) and (c) (0.5, 0.5, 0.5), respectively, at different viewing angles as a function of wavelength.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d ψ d z = i k D ( z ) ψ
D ( z ) = ( 0 D 12 0 0 D 21 0 D 23 0 0 0 0 1 0 0 D 43 0 )
D 12 = 1 ( χ n 3 ) 2 ,
D 21 = n 1 2 cos 2 ϕ + n 2 2 sin 2 ϕ ,
D 23 = ( n 1 2 n 2 2 ) sin ϕ cos ϕ ,
D 43 = n 1 2 sin 2 ϕ + n 2 2 cos 2 ϕ χ 2 .
ψ ( z ) = j = 1 4 C j exp ( i k q j z ) ψ j
D ψ j = q j ψ j .
q e ± = ± 1 2 α + β ,
q o ± = ± 1 2 α β ,
α = ( n 1 2 + n 2 2 ) χ 2 ( n 1 2 cos 2 ϕ + n 2 2 sin 2 ϕ + n 3 2 ) 2 n 3 2 ,
β = ( n 1 2 n 2 2 ) 2 + χ 4 ( n 1 2 cos 2 ϕ + n 2 2 sin 2 ϕ n 3 2 ) 2 n 3 4
2 χ 2 ( n 1 2 n 2 2 ) ( n 1 2 cos 2 ϕ n 2 2 sin 2 ϕ n 3 2 cos 2 ϕ ) n 3 2 .
ψ j = A j ( D 12 D 23 D 13 ( D 22 q j ) D 13 D 21 D 23 ( D 11 q j ) ( D 11 q j ) ( D 22 q j ) D 12 D 21 q j [ ( D 11 q j ) ( D 22 q j ) D 12 D 21 ] ) ,
ψ e ± = ( 1 2 sin 2 ϕ ( n 1 2 n 2 2 ) ( 1 χ 2 n 3 2 ) q e ± cos ϕ sin ϕ ( n 1 2 n 1 2 ) ( q e ± ) 2 + ( n 1 2 cos 2 ϕ + n 21 2 sin 2 ϕ ) ( χ 2 n 3 2 ) n 3 2 ( q e ± ) 3 + q e ± ( n 1 2 cos 2 ϕ + n 2 2 sin 2 ϕ ) ( χ 2 n 3 2 ) n 3 2 ) ,
ψ o ± = ( 1 2 sin 2 ϕ ( n 1 2 n 2 2 ) ( 1 χ 2 n 3 2 ) q o ± cos ϕ sin ϕ ( n 1 2 n 2 2 ) ( q o ± ) 2 + ( n 1 2 cos 2 ϕ + n 2 2 sin 2 ϕ ) ( χ 2 n 3 2 ) n 3 2 ( q o ± ) 3 + q o ± ( n 1 2 cos 2 ϕ + n 21 2 sin 2 ϕ ) ( χ 2 n 3 2 ) n 3 2 ) .
η = ( 1 n 1 2 0 0 0 1 n 2 2 0 0 0 1 n 3 2 )
η t = ( cos 2 θ o cos 2 ϕ n 1 2 + cos 2 θ o sin 2 ϕ n 2 2 + sin 2 θ o n 3 2 cos θ o cos ϕ sin ϕ n 1 2 + cos θ o cos ϕ sin ϕ n 2 2 cos θ o cos ϕ sin ϕ n 1 2 + cos θ o cos ϕ sin ϕ n 2 2 sin 2 ϕ n 1 2 + cos 2 ϕ n 2 2 )
ψ = tan 1 ( A B C 2 D )
N z = n 2 ( n 1 n 3 ) n 3 ( n 1 n 2 ) with n 1 > n 2

Metrics