Abstract

The splitting and the shift of resonance peaks in the output spectrum of two-mode fiber acousto-optic devices caused by twist perturbation are described. An elliptical-core two-mode fiber and a two-mode photonic-crystal fiber are used for the analysis. The splitting of the resonance peaks are found to be almost linearly proportional to the twist angle of the fiber with the slopes of about 0.58 nm/(rad/m) for the elliptical-core fiber and about 0.29 nm/(rad/m) for the photonic crystal fiber. The experimental results compare well with the theoretical predictions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber tunable filter and laser based on two mode fiber," Opt. Lett. 21, 27-29 (1996).
    [CrossRef] [PubMed]
  2. I. K. Hwang, S. H. Yun, and B. Y. Kim, "All-fiber tunable comb filter with nonreciprocal transmission," IEEE Photon. Technol. Lett. 10, 1437-1439 (1998).
    [CrossRef]
  3. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, "All-fiber wavelength-tunable acousto-optic switches based on intermodal coupling in fibers," J. Lightwave Technol. 20, 1864-1868 (2002).
    [CrossRef]
  4. J. Zhao, X. Liu, Y. Wang, and Y. Luo, "Bending effect on fiber acousto-optic mode coupling," Appl. Opt. 44, 5101-5104 (2005).
    [CrossRef] [PubMed]
  5. H. C. Park, H. S. Park, and B. Y. Kim, "Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control," Opt. Lett. 30, 3126-3128 (2005).
    [CrossRef] [PubMed]
  6. A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
    [CrossRef]
  7. W. R. Trutna, Jr., David . W. Dolfi, and Curt  A. Flory, "Anomalous sidelobes and birefringence apodization in acousto-optic tunable filters," Opt. Lett. 18, 28-30 (1993).
    [CrossRef]
  8. J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, "Analysis of Intermodal Coupling in a Two-Mode Fiber with Periodic Microbends," Opt. Lett. 12, 281-283 (1987).
    [CrossRef] [PubMed]
  9. Dan �?stling and Helge  E. Engan, "Narrow-band acousto-optic tunable filtering in a two-mode fiber," Opt. Lett. 20, 1247-1249 (1995).
    [CrossRef] [PubMed]
  10. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
    [CrossRef]
  11. B. Langli and K. Bløtekjær, "Effect of acoustic birefringence on acoustooptic interaction in birefringent two-mode optical fibers," J. Lightwave Technol. 21, 528-535 (1993).
    [CrossRef]
  12. R. Ulrich and A. Simon, "Polarization optics of twisted single-mode fibers," Appl. Opt. 18, 2241-2251 (1979).
    [CrossRef] [PubMed]
  13. Y. Fujii and K Sano, "Polarization coupling in twisted elliptical optical fiber," Appl. Opt. 19, 2602-2605 (1980).
    [CrossRef] [PubMed]
  14. Sun Do Lim, Hyun Chul Park, In Kag Hwang, and Byoung Yoon Kim, "Combined effects of optical and acoustic birefringence on acousto-optic mode coupling in photonic crystal fiber," Opt. Express 16, 6125-6133 (2008).
    [CrossRef]
  15. M. C. Pacitti, J. N. Blake and S. L. A. Carrara, "A simple model of dispersion in step-index elliptical-core optical fiber," Opt. Fiber Technol. 2, 201-206 (1996).
    [CrossRef]
  16. M. V. Andres, M. J. Tudor, and K. W. H. Foulds, "Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors," Electron. Lett. 23, 774-775 (1987).
    [CrossRef]

2008

2005

2002

2000

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

1998

I. K. Hwang, S. H. Yun, and B. Y. Kim, "All-fiber tunable comb filter with nonreciprocal transmission," IEEE Photon. Technol. Lett. 10, 1437-1439 (1998).
[CrossRef]

1996

S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber tunable filter and laser based on two mode fiber," Opt. Lett. 21, 27-29 (1996).
[CrossRef] [PubMed]

M. C. Pacitti, J. N. Blake and S. L. A. Carrara, "A simple model of dispersion in step-index elliptical-core optical fiber," Opt. Fiber Technol. 2, 201-206 (1996).
[CrossRef]

1995

1993

1988

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

1987

J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, "Analysis of Intermodal Coupling in a Two-Mode Fiber with Periodic Microbends," Opt. Lett. 12, 281-283 (1987).
[CrossRef] [PubMed]

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, "Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors," Electron. Lett. 23, 774-775 (1987).
[CrossRef]

1980

1979

??stling, Dan

Andres, M. V.

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, "Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors," Electron. Lett. 23, 774-775 (1987).
[CrossRef]

Birks, T. A.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

Blake, J. N.

M. C. Pacitti, J. N. Blake and S. L. A. Carrara, "A simple model of dispersion in step-index elliptical-core optical fiber," Opt. Fiber Technol. 2, 201-206 (1996).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, "Analysis of Intermodal Coupling in a Two-Mode Fiber with Periodic Microbends," Opt. Lett. 12, 281-283 (1987).
[CrossRef] [PubMed]

Bløtekjær, K.

Carrara, S. L. A.

M. C. Pacitti, J. N. Blake and S. L. A. Carrara, "A simple model of dispersion in step-index elliptical-core optical fiber," Opt. Fiber Technol. 2, 201-206 (1996).
[CrossRef]

Diez, A.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

Dolfi, David

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, "Analysis of Intermodal Coupling in a Two-Mode Fiber with Periodic Microbends," Opt. Lett. 12, 281-283 (1987).
[CrossRef] [PubMed]

Engan, Helge

Flory, Curt

Foulds, K. W. H.

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, "Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors," Electron. Lett. 23, 774-775 (1987).
[CrossRef]

Fujii, Y.

Hwang, I. K.

I. K. Hwang, S. H. Yun, and B. Y. Kim, "All-fiber tunable comb filter with nonreciprocal transmission," IEEE Photon. Technol. Lett. 10, 1437-1439 (1998).
[CrossRef]

S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber tunable filter and laser based on two mode fiber," Opt. Lett. 21, 27-29 (1996).
[CrossRef] [PubMed]

Hwang, In Kag

Kakarantzas, G.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

Kim, B. Y.

Kim, Byoung Yoon

Langli, B.

Lim, Sun Do

Liu, X.

Luo, Y.

Pacitti, M. C.

M. C. Pacitti, J. N. Blake and S. L. A. Carrara, "A simple model of dispersion in step-index elliptical-core optical fiber," Opt. Fiber Technol. 2, 201-206 (1996).
[CrossRef]

Park, H. C.

Park, H. S.

Park, Hyun Chul

Russell, P. St. J.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

Sano, K

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, "Analysis of Intermodal Coupling in a Two-Mode Fiber with Periodic Microbends," Opt. Lett. 12, 281-283 (1987).
[CrossRef] [PubMed]

Simon, A.

Song, K. Y.

Trutna, W. R.

Tudor, M. J.

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, "Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors," Electron. Lett. 23, 774-775 (1987).
[CrossRef]

Ulrich, R.

Wang, Y.

Yun, S. H.

Zhao, J.

Appl. Opt.

Electron. Lett.

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, "Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors," Electron. Lett. 23, 774-775 (1987).
[CrossRef]

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "High strain-induced wavelength tunability in tapered fibre acousto-optic filters," Electron. Lett. 36, 1187-1188 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

I. K. Hwang, S. H. Yun, and B. Y. Kim, "All-fiber tunable comb filter with nonreciprocal transmission," IEEE Photon. Technol. Lett. 10, 1437-1439 (1998).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Fiber Technol.

M. C. Pacitti, J. N. Blake and S. L. A. Carrara, "A simple model of dispersion in step-index elliptical-core optical fiber," Opt. Fiber Technol. 2, 201-206 (1996).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Illustration of the variation of each acoustic polarization component along the even and the odd axes when a linearly polarized flexural acoustic wave is applied along the even axis of twisted fiber at the input (The even and odd axes represent the lobe directions of the even and the odd LP11 mode, respectively.)

Fig. 2.
Fig. 2.

The schematic configuration of the acousto-optic interaction part: TMF: two-mode fiber; SMF: single-mode fiber, MS: mode striper

Fig. 3.
Fig. 3.

Transmission spectra of the AOTF (a) without fiber twist, (b), at the twist angle of 5.5π where the applied acoustic polarizations are y-linear,

Fig. 4.
Fig. 4.

Magnitude of resonance peak shift as a function of the twist angle

Fig. 5.
Fig. 5.

Transmission spectra of the AOTF at the twist angle of 5.5π where the applied acoustic polarizations are (a) right-, and (b) left-circular, respectively

Fig. 6.
Fig. 6.

The scanning electron microscope image of the cleaved end face of the PCF

Fig. 7.
Fig. 7.

Transmission spectrum of the PCF AOTF with a 26-cm-long interaction length at applied acoustic frequency of 3.24 MHz for a broadband unpolarized input light from a LED. (Solid line: experiment, Dashed line: calculation)

Fig. 8.
Fig. 8.

(a). Experimental setup for measurement of the acoustic oscillation amplitude along the two different directions of 0° and 135°; The variation of the acoustic amplitudes (b) along the fiber without twist and (c) along the fiber with the twist angle of 2π

Fig. 9.
Fig. 9.

Transmission spectra of the two-mode PCF AOTF at the four different twist angles of 2π, 4π, 5π, and 6π (Acoustic frequency : 3.24 MHz)

Fig. 10.
Fig. 10.

Calculated beatlength curves between the LP01 and the even and the odd LP11 modes of the PCF used in the experiment.

Fig. 11.
Fig. 11.

(a). Resonance center wavelengths as a function of the twist angle (solid circle is for the odd LP11 mode coupling, empty circle is for the even LP11 mode coupling), (b) Magnitude of the resonance peak splitting for the even LP11 mode coupling as a function of the twist angle; All solid lines and circles denote calculation, and experimental results, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A ( z ) = ( A x ( z ) A y ( z ) ) = ( exp ( i β a x z ) 0 0 exp ( i β a y z ) ) ( A x ( 0 ) A y ( 0 ) )
A ( z ) = ( A x ( z ) A y ( z ) ) = exp ( i β 0 z ) ( cos X i Δ β a z sin X X τ z sin X X τ z sin X X cos X + i Δ β a z sin X X ) ( A x ( 0 ) A y ( 0 ) )
A ( z ) = ( A x ( z ) A y ( z ) ) = exp ( i 2 π Λ 0 z ) ( cos τ z sin τ z sin τ z cos τ z ) ( A x ( 0 ) A y ( 0 ) )
A y even ( z ) = A ave · exp ( i 2 π Λ 0 z ) · cos ( τ z ϕ ) = A ave 2 · ( exp i ( ( 2 π Λ 0 + τ ) z ϕ ) + exp i ( ( 2 π Λ 0 τ z ) + ϕ ) )
A ( z ) y even = i · A ( 0 ) · exp ( i ( 2 π Λ 0 + τ ) z )
A ( z ) y even = i · A ( 0 ) · exp ( i ( 2 π Λ 0 τ ) z )
( A odd ( z ) A even ( z ) ) = A ave · exp ( i 2 π Λ 0 z ) · ( sin ( τ z ϕ ) cos ( τ z ϕ ) )
= A even 2 · exp ( i ϕ ) · exp ( i 2 π Λ 0 z ) · ( i ( e i τ z e i τ z ) e i τ z + e i τ z )

Metrics