Abstract

A fiber-optic temperature sensor by using a multi-cladding special fiber is presented. It works on the basis of leaky mode resonance from fiber core to outer cladding. With the thin-thickness inner cladding, the cladding mode is strongly excited and the resonant spectrum is very sensitive to the refractive index variation of coating material. By coating the special fiber with temperature-sensitive silicone, the temperature response was investigated experimentally from -20°C to 80°C. The results show high temperature sensitivity (240pm/°C at 20°C) and good repeatability.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-series double cladding fibers for simultaneous refractive index and temperature measurement

Huanhuan Liu, Fufei Pang, Hairui Guo, Wenxin Cao, Yunqi Liu, Na Chen, Zhenyi Chen, and Tingyun Wang
Opt. Express 18(12) 13072-13082 (2010)

All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber

Xiongwei Hu, Xiang Shen, Jianjun Wu, Jinggang Peng, Lvyun Yang, Jinyan Li, Haiqin Li, and Nengli Dai
Opt. Express 24(19) 21693-21699 (2016)

Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology

Ying Zhao, Fufei Pang, Yanhua Dong, Jianxiang Wen, Zhenyi Chen, and Tingyun Wang
Opt. Express 21(22) 26136-26143 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, “Fiber-optic sensors: applications and advances,” Opt. Photonics News16, 24–29(2005).
    [Crossref]
  2. Y. -G. Han, X. Dong, J. H. Lee, and S. B. Lee, “Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam,” Opt. Lett. 31, 2839–2841 (2006).
    [Crossref] [PubMed]
  3. Y. -J. Rao, Z. -l. Ran, X. Liao, and H. -y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15, 14936–14941 (2007).
    [Crossref] [PubMed]
  4. Y. -G. Han, S. Lee, C. -S. Kim, J. Kang, Y. Chung, and U. -C. Paek, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Express 11, 476–481 (2003).
    [Crossref] [PubMed]
  5. Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 18, 1879–1881(2006).
  6. L. Cheng, A. J. Steckl, and J. Scofield, “SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor,” IEEE Trans. Electron Devices 50, 2159–2164 (2003).
    [Crossref]
  7. H. Bao, T. Wang, and Y. Shen, “High sensitive coupling evanescent wave temperature sensor,” Proc. SPIE 5634, 558–562 (2005).
    [Crossref]
  8. S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
    [Crossref]
  9. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119-1-3 (2006).
    [Crossref]
  10. J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170(2006).
    [Crossref]
  11. D. S. Moon, B. H. Kim, A. Lin, G. Sun, Y. -G. Han, W. -T. Han, and Y. Chung, “The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber,” Opt. Express 15, 7962–7967 (2007).
    [Crossref] [PubMed]
  12. L. G. Cohen, D. Marcuse, and W. L. Mammel, “Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings,” IEEE J. Quantum Electron. QE-18, 1467–1472(1982).
    [Crossref]
  13. D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold, New York, 1972), Chap. 10.
  14. F. D. Nunes, C. Adriana, d. S. Melo, H. Filomeno, and D. S. Filho, “Theoretical study of coaxial fibers,” Appl. Opt. 35, 388–399 (1996).
    [Crossref] [PubMed]
  15. R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filters using alternating Δ β techniques,” IEEE Trans. Circuits Syst. CAS-26, 1099–1108(1979).
    [Crossref]
  16. P. L. Frangois and C. Vassallo, “Finite cladding effects in W fibers: a new interpretation of leaky modes,” Appl. Opt. 221, 3109–3120(1983).
    [Crossref]
  17. A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y1–61160Y8 (2006).
  18. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
    [Crossref] [PubMed]

2007 (2)

2006 (6)

Y. -G. Han, X. Dong, J. H. Lee, and S. B. Lee, “Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam,” Opt. Lett. 31, 2839–2841 (2006).
[Crossref] [PubMed]

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y1–61160Y8 (2006).

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[Crossref] [PubMed]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 18, 1879–1881(2006).

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119-1-3 (2006).
[Crossref]

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170(2006).
[Crossref]

2005 (2)

H. Bao, T. Wang, and Y. Shen, “High sensitive coupling evanescent wave temperature sensor,” Proc. SPIE 5634, 558–562 (2005).
[Crossref]

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[Crossref]

2003 (2)

1996 (1)

1983 (1)

P. L. Frangois and C. Vassallo, “Finite cladding effects in W fibers: a new interpretation of leaky modes,” Appl. Opt. 221, 3109–3120(1983).
[Crossref]

1982 (1)

L. G. Cohen, D. Marcuse, and W. L. Mammel, “Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings,” IEEE J. Quantum Electron. QE-18, 1467–1472(1982).
[Crossref]

1979 (1)

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filters using alternating Δ β techniques,” IEEE Trans. Circuits Syst. CAS-26, 1099–1108(1979).
[Crossref]

Adriana, C.

Alferness, R. C.

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filters using alternating Δ β techniques,” IEEE Trans. Circuits Syst. CAS-26, 1099–1108(1979).
[Crossref]

Bao, H.

H. Bao, T. Wang, and Y. Shen, “High sensitive coupling evanescent wave temperature sensor,” Proc. SPIE 5634, 558–562 (2005).
[Crossref]

Campopiano, S.

Chandani, S. M.

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[Crossref]

Chen, X.

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 18, 1879–1881(2006).

Cheng, L.

L. Cheng, A. J. Steckl, and J. Scofield, “SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor,” IEEE Trans. Electron Devices 50, 2159–2164 (2003).
[Crossref]

Chung, Y.

Cohen, L. G.

L. G. Cohen, D. Marcuse, and W. L. Mammel, “Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings,” IEEE J. Quantum Electron. QE-18, 1467–1472(1982).
[Crossref]

Contessa, L.

Culshaw, B.

B. Culshaw, “Fiber-optic sensors: applications and advances,” Opt. Photonics News16, 24–29(2005).
[Crossref]

Cusano, A.

Cutolo, A.

Demokan, M. S.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170(2006).
[Crossref]

Deng, H. -y.

Dong, X.

Filho, D. S.

Filomeno, H.

Frangois, P. L.

P. L. Frangois and C. Vassallo, “Finite cladding effects in W fibers: a new interpretation of leaky modes,” Appl. Opt. 221, 3109–3120(1983).
[Crossref]

Giordano, M.

Han, W. -T.

Han, Y. -G.

Huang, Z.

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 18, 1879–1881(2006).

Iadicicco, A.

Jaeger, N. A. F.

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[Crossref]

Jin, W.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170(2006).
[Crossref]

Ju, J.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170(2006).
[Crossref]

Kang, J.

Kim, B. H.

Kim, C. -S.

Koike, A.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y1–61160Y8 (2006).

Lee, J. H.

Lee, S.

Lee, S. B.

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119-1-3 (2006).
[Crossref]

Liao, X.

Lin, A.

Mammel, W. L.

L. G. Cohen, D. Marcuse, and W. L. Mammel, “Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings,” IEEE J. Quantum Electron. QE-18, 1467–1472(1982).
[Crossref]

Marcuse, D.

L. G. Cohen, D. Marcuse, and W. L. Mammel, “Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings,” IEEE J. Quantum Electron. QE-18, 1467–1472(1982).
[Crossref]

D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold, New York, 1972), Chap. 10.

Melo, d. S.

Moon, D. S.

Nunes, F. D.

Paek, U. -C.

Pilla, P.

Ran, Z. -l.

Rao, Y. -J.

Schmidt, R. V.

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filters using alternating Δ β techniques,” IEEE Trans. Circuits Syst. CAS-26, 1099–1108(1979).
[Crossref]

Scofield, J.

L. Cheng, A. J. Steckl, and J. Scofield, “SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor,” IEEE Trans. Electron Devices 50, 2159–2164 (2003).
[Crossref]

Shen, Y.

H. Bao, T. Wang, and Y. Shen, “High sensitive coupling evanescent wave temperature sensor,” Proc. SPIE 5634, 558–562 (2005).
[Crossref]

Steckl, A. J.

L. Cheng, A. J. Steckl, and J. Scofield, “SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor,” IEEE Trans. Electron Devices 50, 2159–2164 (2003).
[Crossref]

Sugimoto, N.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y1–61160Y8 (2006).

Sun, G.

Vassallo, C.

P. L. Frangois and C. Vassallo, “Finite cladding effects in W fibers: a new interpretation of leaky modes,” Appl. Opt. 221, 3109–3120(1983).
[Crossref]

Wang, A.

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 18, 1879–1881(2006).

Wang, T.

H. Bao, T. Wang, and Y. Shen, “High sensitive coupling evanescent wave temperature sensor,” Proc. SPIE 5634, 558–562 (2005).
[Crossref]

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119-1-3 (2006).
[Crossref]

Wang, Z.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170(2006).
[Crossref]

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119-1-3 (2006).
[Crossref]

Zhu, Y.

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 18, 1879–1881(2006).

Appl. Opt. (2)

F. D. Nunes, C. Adriana, d. S. Melo, H. Filomeno, and D. S. Filho, “Theoretical study of coaxial fibers,” Appl. Opt. 35, 388–399 (1996).
[Crossref] [PubMed]

P. L. Frangois and C. Vassallo, “Finite cladding effects in W fibers: a new interpretation of leaky modes,” Appl. Opt. 221, 3109–3120(1983).
[Crossref]

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119-1-3 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

L. G. Cohen, D. Marcuse, and W. L. Mammel, “Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings,” IEEE J. Quantum Electron. QE-18, 1467–1472(1982).
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[Crossref]

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170(2006).
[Crossref]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 18, 1879–1881(2006).

IEEE Trans. Circuits Syst. (1)

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filters using alternating Δ β techniques,” IEEE Trans. Circuits Syst. CAS-26, 1099–1108(1979).
[Crossref]

IEEE Trans. Electron Devices (1)

L. Cheng, A. J. Steckl, and J. Scofield, “SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor,” IEEE Trans. Electron Devices 50, 2159–2164 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (2)

H. Bao, T. Wang, and Y. Shen, “High sensitive coupling evanescent wave temperature sensor,” Proc. SPIE 5634, 558–562 (2005).
[Crossref]

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y1–61160Y8 (2006).

Other (2)

D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold, New York, 1972), Chap. 10.

B. Culshaw, “Fiber-optic sensors: applications and advances,” Opt. Photonics News16, 24–29(2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Refractive index distribution of the special fiber.

Fig. 2.
Fig. 2.

(a). Dispersion curves of the rod waveguide fundamental mode, the cladding modes, (b) normalized field distribution of supermodes, and the dispersion curves of supermodes HE15 and HE16 shown in the insert drawing

Fig. 3.
Fig. 3.

Calculated resonant spectrum of the special fiber.

Fig. 4.
Fig. 4.

The relationship between the resonant wavelength and the refractive index of the coating.

Fig. 5.
Fig. 5.

Shift of the phase-matching wavelength with different n4.

Fig. 6.
Fig. 6.

Refractive index profile tested by optical fiber analyzer (EXFO NR9200).

Fig. 7.
Fig. 7.

Experimental setup for temperature sensing.

Fig. 8.
Fig. 8.

Spectra measured by OSA with temperature increasing.

Fig. 9.
Fig. 9.

Measurement performance of the cladding-mode resonant temperature sensor.

Fig. 10.
Fig. 10.

Transmission variation of the sensor head at resonant wavelength

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β core = β clad ,
P r = 1 sin 2 [ κ L 1 + ( Δ β 2 κ ) 2 ] 1 + ( Δ β 2 κ ) 2 ,

Metrics