Abstract

We propose and demonstrate by numerical simulation a new phase modulation format, the staggered differential phase-shift keying (SDPSK), for 100 Gbit/s applications. Non-return-to-zero (NRZ) SDPSK signals was generated by using two phase modulators, and return-to-zero (RZ) SDPSK signals with 50% duty cycle was generated by cascading a dual-arm Mach-Zehnder modulator. The demodulation of 2 bit/symbol can be simply achieved on 1 bit rate through only one Mach-Zehnder delay interferometer and a balanced receiver. By comparing the transmission characteristics of the two staggered phase modulation formats with those of NRZ-DPSK, RZ-DPSK, NRZ-DQPSK, and RZ-DQPSK, respectively, we show that, the SDPSK signal has similar chromatic dispersion and polarization-mode-dispersion tolerance to the DPSK signal with same NRZ or RZ shape, while the SDPSK signal has stronger nonlinear tolerance than the DPSK or DQPSK signal. In addition, the SDPSK signal has the best transmission performance when each signal was transmitted over 106km optical SMF+DCF, and then launched into a third-order Gaussian optical bandpass filter placed with beyond 125GHz bandwidth.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, L. Xu, Y. K. Yeo, Ji. P. N, T. Wang, and G. K. Chang, "A novel scheme for generating optical dark return-to-zero pulses and its application in a label switching optical network," IEEE Photonics Technol. Lett. 18, 1524-1526 (2006).
    [CrossRef]
  2. R. A. Griffin and A. C. Carter, "Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission," Optical Fiber Communication Conference 2002, WX6 (2002).
    [CrossRef]
  3. C. Wree, J. Leibrich, and W. Rosenkranz, "RZ-DQPSK format with high spectral efficiency and high robustness towards fiber nonlinearities," ECOC 2003, Th2.6.4 (2003).
  4. K. Ho, "The effect of interferometer phase error on direct detection DPSK and DQPSK signals," IEEE Photonics Technol. Lett. 16, 308-310 (2004).
    [CrossRef]
  5. K. Ishida, K. Shimizu, T. Mizuochi, and K. Motoshima, "Transmission of 2020 Gb/s RZ-DQPSK signals over 5090 km with 0.53b/s/Hz spectral efficiency," Optical Fiber Communication Conference on CD-ROM, Washington, DC, The Optical Society of America, Paper FM2 (2004).
  6. F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
    [CrossRef]
  7. P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, "107-gb/s optical signal generation using electronic time-division multiplexing," IEEE J. Lightwave. Technol. 24, 3107-3113 (2006).
    [CrossRef]
  8. C. Schubert, R. H. Derksen, M. Möller, R. Ludwig, C. J. Weiske, J. Lutz, S. Ferber, and C. Schmidt-Langhorst, "107 Gbit/s Transmission Using An Integrated ETDM Receiver,"ECOC 2006, Tu1.5.5.(2006).
  9. D. Breuer and K. Petermann, "Comparison of NRZ- and RZ- modulation format for 40-Gb/s TDM standard-fiber systems," IEEE Photonics Technol. Lett. 9, 398-400 (1997).
    [CrossRef]
  10. O. Vassilieva, T. Hoshida, S. Choudhary, and H. Kuwahara, "Non-linear tolerant and spectrally efficient 86Gbit/s RZ-DQPSK format for a system upgrade," Optical Fiber Communication Conference 2003, ThE7 (2003).

2006

J. Yu, L. Xu, Y. K. Yeo, Ji. P. N, T. Wang, and G. K. Chang, "A novel scheme for generating optical dark return-to-zero pulses and its application in a label switching optical network," IEEE Photonics Technol. Lett. 18, 1524-1526 (2006).
[CrossRef]

P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, "107-gb/s optical signal generation using electronic time-division multiplexing," IEEE J. Lightwave. Technol. 24, 3107-3113 (2006).
[CrossRef]

2004

K. Ho, "The effect of interferometer phase error on direct detection DPSK and DQPSK signals," IEEE Photonics Technol. Lett. 16, 308-310 (2004).
[CrossRef]

2003

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
[CrossRef]

1997

D. Breuer and K. Petermann, "Comparison of NRZ- and RZ- modulation format for 40-Gb/s TDM standard-fiber systems," IEEE Photonics Technol. Lett. 9, 398-400 (1997).
[CrossRef]

Bapst, U.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
[CrossRef]

Bona, G.L.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
[CrossRef]

Breuer, D.

D. Breuer and K. Petermann, "Comparison of NRZ- and RZ- modulation format for 40-Gb/s TDM standard-fiber systems," IEEE Photonics Technol. Lett. 9, 398-400 (1997).
[CrossRef]

Doerr, C. R.

P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, "107-gb/s optical signal generation using electronic time-division multiplexing," IEEE J. Lightwave. Technol. 24, 3107-3113 (2006).
[CrossRef]

Dorrer, C.

P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, "107-gb/s optical signal generation using electronic time-division multiplexing," IEEE J. Lightwave. Technol. 24, 3107-3113 (2006).
[CrossRef]

Duelk, M.

P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, "107-gb/s optical signal generation using electronic time-division multiplexing," IEEE J. Lightwave. Technol. 24, 3107-3113 (2006).
[CrossRef]

Germann, R.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
[CrossRef]

Ho, K.

K. Ho, "The effect of interferometer phase error on direct detection DPSK and DQPSK signals," IEEE Photonics Technol. Lett. 16, 308-310 (2004).
[CrossRef]

Horst, F.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
[CrossRef]

Offrein, B. J.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
[CrossRef]

Petermann, K.

D. Breuer and K. Petermann, "Comparison of NRZ- and RZ- modulation format for 40-Gb/s TDM standard-fiber systems," IEEE Photonics Technol. Lett. 9, 398-400 (1997).
[CrossRef]

Raybon, G.

P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, "107-gb/s optical signal generation using electronic time-division multiplexing," IEEE J. Lightwave. Technol. 24, 3107-3113 (2006).
[CrossRef]

Wiesmann, D.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
[CrossRef]

Winzer, P. J.

P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, "107-gb/s optical signal generation using electronic time-division multiplexing," IEEE J. Lightwave. Technol. 24, 3107-3113 (2006).
[CrossRef]

Xu, L.

J. Yu, L. Xu, Y. K. Yeo, Ji. P. N, T. Wang, and G. K. Chang, "A novel scheme for generating optical dark return-to-zero pulses and its application in a label switching optical network," IEEE Photonics Technol. Lett. 18, 1524-1526 (2006).
[CrossRef]

Yeo, Y. K.

J. Yu, L. Xu, Y. K. Yeo, Ji. P. N, T. Wang, and G. K. Chang, "A novel scheme for generating optical dark return-to-zero pulses and its application in a label switching optical network," IEEE Photonics Technol. Lett. 18, 1524-1526 (2006).
[CrossRef]

Yu, J.

J. Yu, L. Xu, Y. K. Yeo, Ji. P. N, T. Wang, and G. K. Chang, "A novel scheme for generating optical dark return-to-zero pulses and its application in a label switching optical network," IEEE Photonics Technol. Lett. 18, 1524-1526 (2006).
[CrossRef]

IEEE J. Lightwave. Technol.

P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, "107-gb/s optical signal generation using electronic time-division multiplexing," IEEE J. Lightwave. Technol. 24, 3107-3113 (2006).
[CrossRef]

IEEE Photonics Technol. Lett

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G.L. Bona, "Compact Tunable FIR Dispersion Compensator in SiON Technology," IEEE Photonics Technol. Lett 15, 1570-1572 (2003).
[CrossRef]

IEEE Photonics Technol. Lett.

D. Breuer and K. Petermann, "Comparison of NRZ- and RZ- modulation format for 40-Gb/s TDM standard-fiber systems," IEEE Photonics Technol. Lett. 9, 398-400 (1997).
[CrossRef]

J. Yu, L. Xu, Y. K. Yeo, Ji. P. N, T. Wang, and G. K. Chang, "A novel scheme for generating optical dark return-to-zero pulses and its application in a label switching optical network," IEEE Photonics Technol. Lett. 18, 1524-1526 (2006).
[CrossRef]

K. Ho, "The effect of interferometer phase error on direct detection DPSK and DQPSK signals," IEEE Photonics Technol. Lett. 16, 308-310 (2004).
[CrossRef]

Other

K. Ishida, K. Shimizu, T. Mizuochi, and K. Motoshima, "Transmission of 2020 Gb/s RZ-DQPSK signals over 5090 km with 0.53b/s/Hz spectral efficiency," Optical Fiber Communication Conference on CD-ROM, Washington, DC, The Optical Society of America, Paper FM2 (2004).

R. A. Griffin and A. C. Carter, "Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission," Optical Fiber Communication Conference 2002, WX6 (2002).
[CrossRef]

C. Wree, J. Leibrich, and W. Rosenkranz, "RZ-DQPSK format with high spectral efficiency and high robustness towards fiber nonlinearities," ECOC 2003, Th2.6.4 (2003).

O. Vassilieva, T. Hoshida, S. Choudhary, and H. Kuwahara, "Non-linear tolerant and spectrally efficient 86Gbit/s RZ-DQPSK format for a system upgrade," Optical Fiber Communication Conference 2003, ThE7 (2003).

C. Schubert, R. H. Derksen, M. Möller, R. Ludwig, C. J. Weiske, J. Lutz, S. Ferber, and C. Schmidt-Langhorst, "107 Gbit/s Transmission Using An Integrated ETDM Receiver,"ECOC 2006, Tu1.5.5.(2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Configuration of NRZ-SDPSK transmitter and receiver.

Fig. 2.
Fig. 2.

Principle of NRZ-SDPSK generation and detection.

Fig. 3.
Fig. 3.

Schematic diagram of the SDPSK signal transmission system.

Fig. 4.
Fig. 4.

Measured eye diagrams of (a) NRZ-SDPSK and (b) RZ-SDPSK for the back-to-back case.

Fig. 5.
Fig. 5.

Measured optical spectra of (a) NRZ-SDPSK and (b) RZ-SDPSK.

Fig. 6.
Fig. 6.

EOP versus (a) residual dispersion, (b) first-order-PMD, (c) fiber input power, and (d) bandwidth of third-order Gaussian OBPF..

Tables (1)

Tables Icon

Table. 1 Used optical fiber parameters

Metrics