Abstract

We experimentally demonstrated Intensity-Modulated Direct-Detection (IMDD) single-channel 1,040 km linear transmission and 800 km non-linear transmission at 10 Gb/s over standard single-mode (G.652) fiber, without any optical dispersion compensation or mitigation, using a Maximum-Likelihood Sequence-Estimation (MLSE) receiver employing the square-root (SQRT) branch metric with off-line processing. These experiments were designed as to probe the limits of the MLSE approach. They successfully showed that long-haul uncompensated transmission is in principle possible with MLSE, even in the presence of large uncompensated dispersion and strong intra-channel fiber non-linearities, provided that enough complexity can be built into the receiver. In the linear 1,040 km experiment, a Bit Error Rate (BER) of 10-3 was achieved with an Optical Signal-to-Noise Ratio (OSNR) penalty with respect to back-to-back of 2.9 dB, using two samples per bit and 16,384 trellis states. Several other set-ups were tested as well, including the use of only one sample per bit and fewer trellis states. In the non-linear 800 km experiment, power was ramped up to 12 dBm, exciting substantial Kerr non-linearity, whose induced spectral-broadening exacerbated the effects of the large uncompensated dispersion of the link. Using an MLSE receiver with 1,024 states, we demonstrated a non-linear threshold of 9 dBm. We benchmarked this experiment towards simulations addressing various electrical and optical dispersion compensation strategies. We also carried out an analysis of error run-lengths, on both experiments, which showed that error burstiness may change considerably depending on the number of processor states, OSNR and the amount of non-linearity in the link.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Winters and R. D. Gitlin, "Signal processing techniques in longhaul fiber-optic systems," IEEE Trans. Commun. 38, 14391453 (1990).
    [CrossRef]
  2. A. J. Weiss,"On the Performance of Electrical Equalization in Optical Fiber Transmission Systems," IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).
    [CrossRef]
  3. O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," J. Lightwave Technol. 23, 749-763 (2005).
    [CrossRef]
  4. N. Alic, G. C. Papen, R. E. Saperstein, L. B. Milstein, and Y. Fainman, "Signal statistics and maximum likelihood sequence estimation in intensity modulated fiber optic links containing a single optical preamplifier," Opt. Express 13,4568-4579 (2005).
    [CrossRef] [PubMed]
  5. T. Foggi, E. Forestieri, G. Colavolpe, and G. Prati, "Maximum-likelihood sequence detection with closed-form metrics in OOK optical systems impaired by GVD," J. Lightwave Technol. 24, 3073-3087 (2006).
    [CrossRef]
  6. T. Freckmann and J. Speidel, "Viterbi Equalizer With Analytically Calculated Branch Metrics for Optical ASK and DBPSK," IEEE Photon. Technol. Lett. 18, 277-279 (2006).
    [CrossRef]
  7. P. Poggiolini, G. Bosco, J. Prat, R. Killey, and S. Savory, "Branch Metrics for Effective Long-Haul MLSE" in Proc. of European Conference on Optical Communications (ECOC 2006), (Cannes, Sept. 2006), p. We2.5.
    [CrossRef]
  8. M. R. Hueda, D. E. Crivelli, H. S. Carrer, and O. E. Agazzi, "Parametric estimation of IM/DD optical channels using new closed-form approximations of the signal PDF, J. Lightwave Technol. 25, 957-975 (2007).
    [CrossRef]
  9. M. Franceschini, G. Bongiorni, G. Ferrari, R. Raheli, F. Meli, and A. Castoldi, "Fundamental limits of electronic signal processing in direct-detection optical communications," J. Lightwave Technol. 25, 1742-1753 (2007).
    [CrossRef]
  10. D. Castagnozzi, "Digital signal processing and electronic equalization (EE) of ISI," in Proc. of Optical Fiber Conference (OFC 2004) (Los Angeles, Feb. 2004), p. WM6.
  11. F. Buchali, G. Thielecke, and H. Bulow, "Viterbi equalizer for mitigation of distortions from chromatic dispersion and PMD at 10 Gb/s," iin Proc. of Optical Fiber Conference (OFC 2004) (Los Angeles, Feb. 2004), p. MF85.
  12. A. Faerbert, "Application of digital equalization in optical transmission systems," in Proc. of Optical Fiber Conference (OFC 2006) (Anaheim, Mar. 2006), p. OTuE5.
    [CrossRef]
  13. W. Rosenkranz and C. Xia, "Electrical dispersion compensation for different modulation formats with optical filtering," in Proc. of Optical Fiber Conference (OFC 2006) (Anaheim, Mar. 2006), p. OWR2.
  14. G. Bosco and P. Poggiolini, "Long-Distance Effectiveness of MLSE IMDD Receivers," IEEE Photon. Technol. Lett. 18, 1037-1039 (2006).
    [CrossRef]
  15. M. Rubsamen, P. J. Winzer, R.-J. Essiambre, "MLSE receivers for narrow-band optical filtering," in Proc. of Optical Fiber Conference (OFC 2006) (Anaheim, Mar. 2006), p. OWB6.
    [CrossRef]
  16. F. Buchali and H. Bulow, "Correlation sensitive Viterbi equalization of 10 Gb/s signals in bandwidth limited receivers," in Proc. of Optical Fiber Conference (OFC 2005) (Anaheim, Mar. 2005), p. OFO2.
    [CrossRef]
  17. A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, "Performance of a 10.7 Gb/s Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation," in Proc. of European Conference on Optical Communications (ECOC 2004) (Stockholm, Sept. 2004), p. Th4.1.5.
  18. J. P. Elbers, H. Wernz, H. Griesser, C. Glingener, A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, and C. Schulien, "Measurement of the dispersion tolerance of optical duobinary with an MLSE-receiver at 10.7 Gb/s", in Proc. of Optical Fiber Conference (OFC 2005) (Anaheim, Mar. 2005), p. OThJ4.
    [CrossRef]
  19. J. D. Downie, M. Sauer, and J. Hurley, "1500 km transmission over NZ-DSF without in-line or post-compensation of dispersion for 38x10.7 Gbit/s channels" Electron. Lett. 42, (2006).
    [CrossRef]
  20. S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
    [CrossRef]
  21. J. M. Gen??e, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, "Simultaneous compensation of polarization mode dispersion and chromatic dispersion using electronic signal processing," J. Lightwave Technol. 25,1735-1741 (2007).
    [CrossRef]
  22. J. D. Downie, J. Hurley, and M. Sauer, "Behavior of MLSE-EDC With Self-Phase Modulation Limitations and Various Dispersion Levels in 10.7-Gb/s NRZ and Duobinary Signals," IEEE Phot. Technol. Lett.,  19, 1017-1019 (2007).
    [CrossRef]
  23. S. Chandrasekhar and A. H. Gnauck, "Performance of MLSE receiver in a dispersion-managed experiment at 10.7 Gb/s under non-linear transmission," IEEE Photon. Technol. Lett. 18, 2448-2450 (2006).
    [CrossRef]
  24. N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, and S. Radic, "Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600 km-SMF link without optical dispersion compensation,"in Proc. of Optical Fiber Conference (OFC 2006) (Anaheim, Mar. 2006), p. OWB7.
    [CrossRef]
  25. P. Poggiolini, G. Bosco, S. Savory, Y. Benlachtar, R. I. Killey, and J. Prat, "1,040 km uncompensated IMDD transmission over G.652 fiber at 10 Gbit/s using a reduced-state SQRT-metric MLSE receiver," in Proc. of European Conference on Optical Communications (ECOC 2006), (Cannes, Sept. 2006), p. Th4.4.6.
  26. S. J. Savory, Y. Benlachtar, R. I. Killey, P. Bayvel, G. Bosco, P. Poggiolini, J. Prat, and M. Omella, "IMDD Transmission over 1,040 km of Standard Single- Mode Fiber at 10Gbit/s using a One-Sample-per-Bit Reduced-Complexity MLSE Receiver", in Proc. of Optical Fiber Conference (OFC 2007) (Anaheim, Mar. 2007), p. OThK2.
    [CrossRef]
  27. P. Poggiolini, G. Bosco, J. Prat, R. Killey, S. Savory, "MLSE-EDC versus optical dispersion compensation in a single-channel SPM-limited 800 km link at 10 Gbit/s," in Proc. of European Conference on Optical Communications (ECOC 2007), (Berlin, Sept. 2007), p. Th9.1.3.
    [CrossRef]
  28. D. E. Crivelli, H. S. Carrer, and M. R. Hueda, "On the performance of reduced-state Viterbi receivers in IM/DD optical transmission systems," in Proc. of European Conference on Optical Communications (ECOC 2004), (Stockholm, Sept. 2004), p. We.4.P.083.
  29. M. R. Hueda, D. E. Crivelli, and H. S. Carrer, ??Performance of MLSE based receivers in lightwave systems with nonlinear dispersion and amplified spontaneous emission noise," in Proc. IEEE GLOBECOM 2004, (Dallas, Nov.-Dec. 2004), 1, 299-303.
  30. M. R. Hueda, D. E. Crivelli, and H. S. Carrer, "Analysis of SISO front-end decoders in IM/DD optical channels with application to turbo code decoding," Proc. of IEEE ICCS 2004, (Sept. 2004), 552-558.
  31. G. Bosco, P. Poggiolini, and M. Visintin, "Performance Analysis of MLSE Receivers Based on the Square-Root Metric," to be published in J. of Lightwave Technol.
  32. M. Visintin, P. Poggiolini, and G. Bosco, "Long-haul optically uncompensated IMDD transmission with MLSE using the M-Method," IEEE Photon. Technol. Lett. 19, 1230-1232 (2007).
    [CrossRef]
  33. J. Poirrier "FEC operation in combination with electronic dispersion compensation," in Proc. of Optical Fiber Conference (OFC/NFOEC 2008) (San Diego, Feb. 2008), p. OThO4.
    [CrossRef]
  34. S. Benedetto and E. Biglieri, Principles of Digital Transmission, with Wireless Applications, Springer (1999).
  35. S. Host, R. Johannesson, D. K. Zigangirod, K. Sh. Zigangirod, and V. V. Zyablod, "On the Distribution of the Output Error Burst Lengths for Viterbi Decoding of Convolutional Codes", in Proc. of IEEE ISIT, (Ulm, Germany, June 29 - July 4 1997).
  36. I. B. Djordjevic, B. Vasic, M. Ivkovic, and I. Gabitov, "Achievable information rates for high-speed long-haul optical transmission," J. Lightwave Technol. 23, 3755-3763 (2005).
    [CrossRef]
  37. P. Poggiolini and G. Bosco, "Long-Haul WDM IMDD Transmission at 10.7 Gbit/s in a Dispersion-Managed Multispan System Using a MLSE Receiver," to be published in J. Lightwave Technol.

2007 (5)

2006 (6)

S. Chandrasekhar and A. H. Gnauck, "Performance of MLSE receiver in a dispersion-managed experiment at 10.7 Gb/s under non-linear transmission," IEEE Photon. Technol. Lett. 18, 2448-2450 (2006).
[CrossRef]

T. Foggi, E. Forestieri, G. Colavolpe, and G. Prati, "Maximum-likelihood sequence detection with closed-form metrics in OOK optical systems impaired by GVD," J. Lightwave Technol. 24, 3073-3087 (2006).
[CrossRef]

T. Freckmann and J. Speidel, "Viterbi Equalizer With Analytically Calculated Branch Metrics for Optical ASK and DBPSK," IEEE Photon. Technol. Lett. 18, 277-279 (2006).
[CrossRef]

G. Bosco and P. Poggiolini, "Long-Distance Effectiveness of MLSE IMDD Receivers," IEEE Photon. Technol. Lett. 18, 1037-1039 (2006).
[CrossRef]

J. D. Downie, M. Sauer, and J. Hurley, "1500 km transmission over NZ-DSF without in-line or post-compensation of dispersion for 38x10.7 Gbit/s channels" Electron. Lett. 42, (2006).
[CrossRef]

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

2005 (3)

2003 (1)

A. J. Weiss,"On the Performance of Electrical Equalization in Optical Fiber Transmission Systems," IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).
[CrossRef]

1990 (1)

J. H. Winters and R. D. Gitlin, "Signal processing techniques in longhaul fiber-optic systems," IEEE Trans. Commun. 38, 14391453 (1990).
[CrossRef]

Agazzi, O. E.

Alic, N.

Bongiorni, G.

Bosco, G.

M. Visintin, P. Poggiolini, and G. Bosco, "Long-haul optically uncompensated IMDD transmission with MLSE using the M-Method," IEEE Photon. Technol. Lett. 19, 1230-1232 (2007).
[CrossRef]

G. Bosco and P. Poggiolini, "Long-Distance Effectiveness of MLSE IMDD Receivers," IEEE Photon. Technol. Lett. 18, 1037-1039 (2006).
[CrossRef]

G. Bosco, P. Poggiolini, and M. Visintin, "Performance Analysis of MLSE Receivers Based on the Square-Root Metric," to be published in J. of Lightwave Technol.

P. Poggiolini and G. Bosco, "Long-Haul WDM IMDD Transmission at 10.7 Gbit/s in a Dispersion-Managed Multispan System Using a MLSE Receiver," to be published in J. Lightwave Technol.

Buhl, L. L.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

Carrer, H. S.

Castoldi, A.

Chandrasekhar, S.

S. Chandrasekhar and A. H. Gnauck, "Performance of MLSE receiver in a dispersion-managed experiment at 10.7 Gb/s under non-linear transmission," IEEE Photon. Technol. Lett. 18, 2448-2450 (2006).
[CrossRef]

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

Colavolpe, G.

Crivelli, D. E.

Djordjevic, I. B.

Downie, J. D.

J. D. Downie, J. Hurley, and M. Sauer, "Behavior of MLSE-EDC With Self-Phase Modulation Limitations and Various Dispersion Levels in 10.7-Gb/s NRZ and Duobinary Signals," IEEE Phot. Technol. Lett.,  19, 1017-1019 (2007).
[CrossRef]

J. D. Downie, M. Sauer, and J. Hurley, "1500 km transmission over NZ-DSF without in-line or post-compensation of dispersion for 38x10.7 Gbit/s channels" Electron. Lett. 42, (2006).
[CrossRef]

Fainman, Y.

Fan, Z.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

Ferrari, G.

Foggi, T.

Forestieri, E.

Franceschini, M.

Freckmann, T.

T. Freckmann and J. Speidel, "Viterbi Equalizer With Analytically Calculated Branch Metrics for Optical ASK and DBPSK," IEEE Photon. Technol. Lett. 18, 277-279 (2006).
[CrossRef]

Gabitov, I.

Gitlin, R. D.

J. H. Winters and R. D. Gitlin, "Signal processing techniques in longhaul fiber-optic systems," IEEE Trans. Commun. 38, 14391453 (1990).
[CrossRef]

Gnauck, A. H.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

S. Chandrasekhar and A. H. Gnauck, "Performance of MLSE receiver in a dispersion-managed experiment at 10.7 Gb/s under non-linear transmission," IEEE Photon. Technol. Lett. 18, 2448-2450 (2006).
[CrossRef]

Hueda, M. R.

Hurley, J.

J. D. Downie, J. Hurley, and M. Sauer, "Behavior of MLSE-EDC With Self-Phase Modulation Limitations and Various Dispersion Levels in 10.7-Gb/s NRZ and Duobinary Signals," IEEE Phot. Technol. Lett.,  19, 1017-1019 (2007).
[CrossRef]

J. D. Downie, M. Sauer, and J. Hurley, "1500 km transmission over NZ-DSF without in-line or post-compensation of dispersion for 38x10.7 Gbit/s channels" Electron. Lett. 42, (2006).
[CrossRef]

Ivkovic, M.

Mahgerefteh, D.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

Matsui, Y.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

McCallion, K.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

Meli, F.

Milstein, L. B.

Papen, G. C.

Poggiolini, P.

M. Visintin, P. Poggiolini, and G. Bosco, "Long-haul optically uncompensated IMDD transmission with MLSE using the M-Method," IEEE Photon. Technol. Lett. 19, 1230-1232 (2007).
[CrossRef]

G. Bosco and P. Poggiolini, "Long-Distance Effectiveness of MLSE IMDD Receivers," IEEE Photon. Technol. Lett. 18, 1037-1039 (2006).
[CrossRef]

G. Bosco, P. Poggiolini, and M. Visintin, "Performance Analysis of MLSE Receivers Based on the Square-Root Metric," to be published in J. of Lightwave Technol.

P. Poggiolini and G. Bosco, "Long-Haul WDM IMDD Transmission at 10.7 Gbit/s in a Dispersion-Managed Multispan System Using a MLSE Receiver," to be published in J. Lightwave Technol.

Prati, G.

Raheli, R.

Raybon, G.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

Saperstein, R. E.

Sauer, M.

J. D. Downie, J. Hurley, and M. Sauer, "Behavior of MLSE-EDC With Self-Phase Modulation Limitations and Various Dispersion Levels in 10.7-Gb/s NRZ and Duobinary Signals," IEEE Phot. Technol. Lett.,  19, 1017-1019 (2007).
[CrossRef]

J. D. Downie, M. Sauer, and J. Hurley, "1500 km transmission over NZ-DSF without in-line or post-compensation of dispersion for 38x10.7 Gbit/s channels" Electron. Lett. 42, (2006).
[CrossRef]

Speidel, J.

T. Freckmann and J. Speidel, "Viterbi Equalizer With Analytically Calculated Branch Metrics for Optical ASK and DBPSK," IEEE Photon. Technol. Lett. 18, 277-279 (2006).
[CrossRef]

Tayebati, P.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

Vasic, B.

Visintin, M.

M. Visintin, P. Poggiolini, and G. Bosco, "Long-haul optically uncompensated IMDD transmission with MLSE using the M-Method," IEEE Photon. Technol. Lett. 19, 1230-1232 (2007).
[CrossRef]

G. Bosco, P. Poggiolini, and M. Visintin, "Performance Analysis of MLSE Receivers Based on the Square-Root Metric," to be published in J. of Lightwave Technol.

Weiss, A. J.

A. J. Weiss,"On the Performance of Electrical Equalization in Optical Fiber Transmission Systems," IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).
[CrossRef]

Winters, J. H.

J. H. Winters and R. D. Gitlin, "Signal processing techniques in longhaul fiber-optic systems," IEEE Trans. Commun. 38, 14391453 (1990).
[CrossRef]

Zheng, X.

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

Electron. Lett. (1)

J. D. Downie, M. Sauer, and J. Hurley, "1500 km transmission over NZ-DSF without in-line or post-compensation of dispersion for 38x10.7 Gbit/s channels" Electron. Lett. 42, (2006).
[CrossRef]

IEEE Phot. Technol. Lett. (1)

J. D. Downie, J. Hurley, and M. Sauer, "Behavior of MLSE-EDC With Self-Phase Modulation Limitations and Various Dispersion Levels in 10.7-Gb/s NRZ and Duobinary Signals," IEEE Phot. Technol. Lett.,  19, 1017-1019 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

S. Chandrasekhar and A. H. Gnauck, "Performance of MLSE receiver in a dispersion-managed experiment at 10.7 Gb/s under non-linear transmission," IEEE Photon. Technol. Lett. 18, 2448-2450 (2006).
[CrossRef]

A. J. Weiss,"On the Performance of Electrical Equalization in Optical Fiber Transmission Systems," IEEE Photon. Technol. Lett. 15, 1225-1227 (2003).
[CrossRef]

T. Freckmann and J. Speidel, "Viterbi Equalizer With Analytically Calculated Branch Metrics for Optical ASK and DBPSK," IEEE Photon. Technol. Lett. 18, 277-279 (2006).
[CrossRef]

G. Bosco and P. Poggiolini, "Long-Distance Effectiveness of MLSE IMDD Receivers," IEEE Photon. Technol. Lett. 18, 1037-1039 (2006).
[CrossRef]

S. Chandrasekhar, A. H. Gnauck, G. Raybon, L. L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation," IEEE Photon. Technol. Lett. 18, 1560-1562 (2006).
[CrossRef]

M. Visintin, P. Poggiolini, and G. Bosco, "Long-haul optically uncompensated IMDD transmission with MLSE using the M-Method," IEEE Photon. Technol. Lett. 19, 1230-1232 (2007).
[CrossRef]

IEEE Trans. Commun. (1)

J. H. Winters and R. D. Gitlin, "Signal processing techniques in longhaul fiber-optic systems," IEEE Trans. Commun. 38, 14391453 (1990).
[CrossRef]

J. Lightwave Technol (1)

P. Poggiolini and G. Bosco, "Long-Haul WDM IMDD Transmission at 10.7 Gbit/s in a Dispersion-Managed Multispan System Using a MLSE Receiver," to be published in J. Lightwave Technol.

J. Lightwave Technol. (6)

J. of Lightwave Technol. (1)

G. Bosco, P. Poggiolini, and M. Visintin, "Performance Analysis of MLSE Receivers Based on the Square-Root Metric," to be published in J. of Lightwave Technol.

Opt. Express (1)

Other (19)

J. Poirrier "FEC operation in combination with electronic dispersion compensation," in Proc. of Optical Fiber Conference (OFC/NFOEC 2008) (San Diego, Feb. 2008), p. OThO4.
[CrossRef]

S. Benedetto and E. Biglieri, Principles of Digital Transmission, with Wireless Applications, Springer (1999).

S. Host, R. Johannesson, D. K. Zigangirod, K. Sh. Zigangirod, and V. V. Zyablod, "On the Distribution of the Output Error Burst Lengths for Viterbi Decoding of Convolutional Codes", in Proc. of IEEE ISIT, (Ulm, Germany, June 29 - July 4 1997).

M. Rubsamen, P. J. Winzer, R.-J. Essiambre, "MLSE receivers for narrow-band optical filtering," in Proc. of Optical Fiber Conference (OFC 2006) (Anaheim, Mar. 2006), p. OWB6.
[CrossRef]

F. Buchali and H. Bulow, "Correlation sensitive Viterbi equalization of 10 Gb/s signals in bandwidth limited receivers," in Proc. of Optical Fiber Conference (OFC 2005) (Anaheim, Mar. 2005), p. OFO2.
[CrossRef]

A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, "Performance of a 10.7 Gb/s Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation," in Proc. of European Conference on Optical Communications (ECOC 2004) (Stockholm, Sept. 2004), p. Th4.1.5.

J. P. Elbers, H. Wernz, H. Griesser, C. Glingener, A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, and C. Schulien, "Measurement of the dispersion tolerance of optical duobinary with an MLSE-receiver at 10.7 Gb/s", in Proc. of Optical Fiber Conference (OFC 2005) (Anaheim, Mar. 2005), p. OThJ4.
[CrossRef]

P. Poggiolini, G. Bosco, J. Prat, R. Killey, and S. Savory, "Branch Metrics for Effective Long-Haul MLSE" in Proc. of European Conference on Optical Communications (ECOC 2006), (Cannes, Sept. 2006), p. We2.5.
[CrossRef]

D. Castagnozzi, "Digital signal processing and electronic equalization (EE) of ISI," in Proc. of Optical Fiber Conference (OFC 2004) (Los Angeles, Feb. 2004), p. WM6.

F. Buchali, G. Thielecke, and H. Bulow, "Viterbi equalizer for mitigation of distortions from chromatic dispersion and PMD at 10 Gb/s," iin Proc. of Optical Fiber Conference (OFC 2004) (Los Angeles, Feb. 2004), p. MF85.

A. Faerbert, "Application of digital equalization in optical transmission systems," in Proc. of Optical Fiber Conference (OFC 2006) (Anaheim, Mar. 2006), p. OTuE5.
[CrossRef]

W. Rosenkranz and C. Xia, "Electrical dispersion compensation for different modulation formats with optical filtering," in Proc. of Optical Fiber Conference (OFC 2006) (Anaheim, Mar. 2006), p. OWR2.

N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, and S. Radic, "Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600 km-SMF link without optical dispersion compensation,"in Proc. of Optical Fiber Conference (OFC 2006) (Anaheim, Mar. 2006), p. OWB7.
[CrossRef]

P. Poggiolini, G. Bosco, S. Savory, Y. Benlachtar, R. I. Killey, and J. Prat, "1,040 km uncompensated IMDD transmission over G.652 fiber at 10 Gbit/s using a reduced-state SQRT-metric MLSE receiver," in Proc. of European Conference on Optical Communications (ECOC 2006), (Cannes, Sept. 2006), p. Th4.4.6.

S. J. Savory, Y. Benlachtar, R. I. Killey, P. Bayvel, G. Bosco, P. Poggiolini, J. Prat, and M. Omella, "IMDD Transmission over 1,040 km of Standard Single- Mode Fiber at 10Gbit/s using a One-Sample-per-Bit Reduced-Complexity MLSE Receiver", in Proc. of Optical Fiber Conference (OFC 2007) (Anaheim, Mar. 2007), p. OThK2.
[CrossRef]

P. Poggiolini, G. Bosco, J. Prat, R. Killey, S. Savory, "MLSE-EDC versus optical dispersion compensation in a single-channel SPM-limited 800 km link at 10 Gbit/s," in Proc. of European Conference on Optical Communications (ECOC 2007), (Berlin, Sept. 2007), p. Th9.1.3.
[CrossRef]

D. E. Crivelli, H. S. Carrer, and M. R. Hueda, "On the performance of reduced-state Viterbi receivers in IM/DD optical transmission systems," in Proc. of European Conference on Optical Communications (ECOC 2004), (Stockholm, Sept. 2004), p. We.4.P.083.

M. R. Hueda, D. E. Crivelli, and H. S. Carrer, ??Performance of MLSE based receivers in lightwave systems with nonlinear dispersion and amplified spontaneous emission noise," in Proc. IEEE GLOBECOM 2004, (Dallas, Nov.-Dec. 2004), 1, 299-303.

M. R. Hueda, D. E. Crivelli, and H. S. Carrer, "Analysis of SISO front-end decoders in IM/DD optical channels with application to turbo code decoding," Proc. of IEEE ICCS 2004, (Sept. 2004), 552-558.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Set-up used for the experiments.

Fig. 2.
Fig. 2.

Experimental eye diagram at the output of the transmitter.

Fig. 3.
Fig. 3.

BER vs. OSNR (over 0.1 nm) obtained using 2 samples/bit. Star: benchmark back-to-back sensitivity without MLSE.

Fig. 4.
Fig. 4.

BER vs. OSNR (over 0.1 nm). Solid curves: 2 samples/bit. Dashed curves: 4 samples/ bit.

Fig. 5.
Fig. 5.

BER vs. OSNR (over 0.1 nm) at 1,040 km of SSMF. Results obtained through computer simulations.

Fig. 6.
Fig. 6.

OSNR (over 0.1 nm) needed to achieve a BER=10-3 vs. PD filter bandwidth. Solid curve: 1 sample/bit, 8,192 states. Dashed curve: 2 samples/bit, 4,096 states.

Fig. 7.
Fig. 7.

BER vs. OSNR (over 0.1 nm). Solid curves: 1 sample/bit. Dashed curves: 2 samples/ bit. Same-shape markers indicate similar-complexity systems.

Fig. 8.
Fig. 8.

BER vs. TX power, 800 km uncompensated SSMF transmission experiment, OSNR=16 dB (0.1nm), MLSE RX with variable number of states.

Fig. 9.
Fig. 9.

BER vs. TX power, 800 km uncompensated SSMF transmission simulation, OSNR=14.5 dB (0.1nm), MLSE RX with variable number of states.

Fig. 10.
Fig. 10.

BER vs. TX power, 800km SMF, optical vs. electrical compensation; OSNR (0.1 nm) at RX: 16 dB (MLSE experiment), 14.5 dB (MLSE simulations), 11.2 dB (ODC simulations).

Fig. 11.
Fig. 11.

Two-dimensional histogram (in linear and logarithmic scale) of the number of error events, vs. error event length Le (from first erred bit to last erred bit, inclusive, within a preset window W=12 equal to the trellis memory) and vs. the number Ne of actually erred bits in the event. Linear 1,040 km experiment, OSNR=15 dB, 4,096 states, BER≈1.2·10-3.

Fig. 12.
Fig. 12.

Two-dimensional histogram (in linear and logarithmic scale) of the number of error events, vs. error event length Le (from first erred bit to last erred bit, inclusive, within a preset window W=13 equal to the trellis memory) and vs. the number Ne of actually erred bits in the event. Linear 1,040 km experiment, OSNR=15 dB, 8,192 states, BER≈8·10-4.

Fig. 13.
Fig. 13.

Two-dimensional histogram (in linear and logarithmic scale) of the number of error events, vs. error event length Le (from first erred bit to last erred bit, inclusive, within a preset window W=13 equal to the trellis memory) and vs. the number Ne of actually erred bits in the event. Non-linear 800 kmexperiment, PTX =11 dBm, OSNR=16 dB 8,192 states, BER≈2.5·10-3.

Metrics