Abstract

We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 µm light, the optimum waveguide exhibited coupling losses of ≈0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of ≈1.5 dB.cm-1. This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996) http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1729
    [CrossRef] [PubMed]
  2. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
    [CrossRef] [PubMed]
  3. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, "Femtosecond writing of active optical waveguides with astigmatically shaped beams," J. Opt. Soc. Am. B 20, 1559-1567 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-7-1559.
    [CrossRef]
  4. Y. Nasu, M. Kohtoku, and Y. Hibino, "Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit," Opt. Lett. 30, 723-725 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-7-723
    [CrossRef] [PubMed]
  5. C. B. Schaffer, A. Brodeur and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001)
    [CrossRef]
  6. A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-20-2987
    [CrossRef] [PubMed]
  7. W. Yang, P. G. Kazansky, Y. P. Svirko, "Non-reciprocal ultrafast laser writing," Nat. Photonics 2, 99-104 (2008)
    [CrossRef]
  8. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express 16, 9443-9458 (2008).
    [CrossRef] [PubMed]
  9. G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide-Bragg gratings in bulk fused silica," Opt. Lett. 31, 2690-2691 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-18-2690
    [CrossRef] [PubMed]
  10. H. Zhang, S. M. Eaton, and P. R. Herman, "Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser," Opt. Lett. 32, 2559-2561 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2559
    [CrossRef] [PubMed]
  11. M. Ams, G. D. Marshall, and M. J. Withford, "Study of the influence of femtosecond laser polarisation on direct writing of waveguides," Opt. Express 14, 13158-13163 (2006).
    [CrossRef] [PubMed]
  12. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser," Opt. Lett. 28, 55-57 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-1-55
    [CrossRef] [PubMed]
  13. Menzel Gläser product information sheet, "Erie Electroverre SA" http://www.menzel.de/fileadmin/Templates/Menzel/pdf/en/EVR_en.pdf
  14. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications," Opt. Express 15, 11691-11697 (2007).
    [CrossRef] [PubMed]
  15. R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
    [CrossRef]
  16. "Product Information PI1036" (Corning Incorporated, 1999).

2008 (2)

2007 (2)

2006 (4)

2005 (2)

2003 (2)

2001 (1)

C. B. Schaffer, A. Brodeur and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001)
[CrossRef]

1996 (1)

Ams, M.

Barton, J. S.

Bookey, H. T.

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications," Opt. Express 15, 11691-11697 (2007).
[CrossRef] [PubMed]

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Brodeur, A.

C. B. Schaffer, A. Brodeur and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001)
[CrossRef]

Campbell, S.

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications," Opt. Express 15, 11691-11697 (2007).
[CrossRef] [PubMed]

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Cerullo, G.

Chen, W.

Cheng, Y.

Davis, K. M.

De Silvestri, S.

Eaton, S. M.

Fender, A.

Herman, P. R.

Hibino, Y.

Hirao, K.

Ho, S.

Kar, A. K.

Kawachi, M.

Kazansky, P. G.

W. Yang, P. G. Kazansky, Y. P. Svirko, "Non-reciprocal ultrafast laser writing," Nat. Photonics 2, 99-104 (2008)
[CrossRef]

Kohtoku, M.

Laporta, P.

Li, J.

MacPherson, W. N.

Marangoni, M.

Marshall, G. D.

Masuda, M.

Mazur, E.

C. B. Schaffer, A. Brodeur and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001)
[CrossRef]

Midorikawa, K.

Miura, K.

Nasu, Y.

Nejadmalayeri, A. H.

Ng, M. L.

Osellame, R.

Polli, D.

Psaila, N.

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Psaila, N. D.

Ramponi, R.

Reid, D. T.

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications," Opt. Express 15, 11691-11697 (2007).
[CrossRef] [PubMed]

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001)
[CrossRef]

Shen, S.

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Shihoyama, K.

Spence, D. J.

Sugimoto, N.

Sugioka, K.

Svirko, Y. P.

W. Yang, P. G. Kazansky, Y. P. Svirko, "Non-reciprocal ultrafast laser writing," Nat. Photonics 2, 99-104 (2008)
[CrossRef]

Taccheo, S.

Thomson, R. R.

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications," Opt. Express 15, 11691-11697 (2007).
[CrossRef] [PubMed]

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Toyoda, K.

Withford, M. J.

Yang, W.

W. Yang, P. G. Kazansky, Y. P. Svirko, "Non-reciprocal ultrafast laser writing," Nat. Photonics 2, 99-104 (2008)
[CrossRef]

Zhang, H.

IEEE Photon. Technol. Lett. (1)

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001)
[CrossRef]

Nat. Photonics (1)

W. Yang, P. G. Kazansky, Y. P. Svirko, "Non-reciprocal ultrafast laser writing," Nat. Photonics 2, 99-104 (2008)
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

H. Zhang, S. M. Eaton, and P. R. Herman, "Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser," Opt. Lett. 32, 2559-2561 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2559
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide-Bragg gratings in bulk fused silica," Opt. Lett. 31, 2690-2691 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-18-2690
[CrossRef] [PubMed]

A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-20-2987
[CrossRef] [PubMed]

Y. Nasu, M. Kohtoku, and Y. Hibino, "Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit," Opt. Lett. 30, 723-725 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-7-723
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996) http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1729
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser," Opt. Lett. 28, 55-57 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-1-55
[CrossRef] [PubMed]

Other (2)

Menzel Gläser product information sheet, "Erie Electroverre SA" http://www.menzel.de/fileadmin/Templates/Menzel/pdf/en/EVR_en.pdf

"Product Information PI1036" (Corning Incorporated, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diagram of the experimental configuration used to inscribe waveguides. The inset shows the deformable mirror actuator pattern. Each column of actuators is labeled 1 to 7.

Fig. 2.
Fig. 2.

(a). 1/e2 diameter of the Gaussian fitted to the x-axis intensity profile of the laser beam as a function of distance away from the deformable mirror for 5 different mirror settings. (b) Deformable mirror actuator voltage patterns used during the investigation.

Fig. 3.
Fig. 3.

(a). Transmission mode optical micrographs of the cross sections of the features inscribed using 5.0 µJ pulses and deformable mirror settings (i) “A”, (ii) “B”, (iii) “C”, (iv) “D” and (v) “E”. The contrast of the micrographs has been adjusted to make them clearer. (b) CCD camera images of the laser beam directly before the microscope objective for deformable mirror actuator settings (i) “A”, (ii) “B”, (iii) “C”, (iv) “D” and (v) “E”.

Fig. 4.
Fig. 4.

(a) (b) Transmission mode optical micrographs of the end facet of the optimum waveguide. The images were acquired by imaging (a) slightly inside and (b) directly on the facet surface. (c) (d) Near field images of the 1.55 µm mode guided by the optimum waveguide and Corning SMF-28 fiber respectively. The field of view of each image is 40.0 µm×40.0 µm.

Tables (1)

Tables Icon

Table 1. Characterization results for each waveguide fabricated using mirror settings “A” and “B” that exhibited the lowest insertion loss.

Metrics