Abstract

We report single-wall carbon nanotube (CNT) doped liquid crystal materials which show significant improvement in the response time for optical controlled birefringence (OCB) cells. Four different types of liquid crystals (LCs) were chosen to mix with CNTs and they demonstrated similar results in improving the response time. Experimental results show that the anchoring energy at alignment layers has been changed by CNT doping. CNTs were attracted to the alignment layer and modified the property of the surface. The anchoring enhancement is due to the π-π electron stacking between the CNTs, LC molecules and alignment layers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P.J. Bos and K. Koehler, “The pi-cell: A fast liquid crystal optical switching device,” Mol. Cryst. Liq Cryst. 133, 329 (1984).
    [CrossRef]
  2. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
    [CrossRef]
  3. W. Lee, C.-Y. Wang, and Yu-Cheng Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid crystal host,” Appl. Phys. Lett. 85, 513–515 (2004).
    [CrossRef]
  4. Wei Lee and Yu-Cheng Shih, “Effects of carbon-nanotubes doping on the performance of a TN-LCD”, Journal of SID,  13, 9 (2005).
  5. H.-Y. Chen and W. Lee, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90, 033510-1/033510-3 (2007).
    [CrossRef]
  6. Seung Hee Lee, Hee-Kyu Lee, Seung-Eun Lee, and Young Hee Lee, “Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal device,” Proc. SPIE 6487, OU-1, (2007).
    [CrossRef]
  7. X. Nie, R. Lu, H. Xianyu, T. Wu, and S-T Wu, “Anchoring energy and cell gap effect on liquid crystal response time,” J. Appl. Phys. 95, 5502 (2004).
  8. J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
    [CrossRef] [PubMed]
  9. Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199 (1997).
    [CrossRef]
  10. L. M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer, 1993), Chapter 2.

2007 (2)

H.-Y. Chen and W. Lee, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90, 033510-1/033510-3 (2007).
[CrossRef]

Seung Hee Lee, Hee-Kyu Lee, Seung-Eun Lee, and Young Hee Lee, “Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal device,” Proc. SPIE 6487, OU-1, (2007).
[CrossRef]

2005 (1)

Wei Lee and Yu-Cheng Shih, “Effects of carbon-nanotubes doping on the performance of a TN-LCD”, Journal of SID,  13, 9 (2005).

2004 (2)

W. Lee, C.-Y. Wang, and Yu-Cheng Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid crystal host,” Appl. Phys. Lett. 85, 513–515 (2004).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. Wu, and S-T Wu, “Anchoring energy and cell gap effect on liquid crystal response time,” J. Appl. Phys. 95, 5502 (2004).

1998 (1)

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

1997 (1)

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199 (1997).
[CrossRef]

1991 (1)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

1984 (1)

P.J. Bos and K. Koehler, “The pi-cell: A fast liquid crystal optical switching device,” Mol. Cryst. Liq Cryst. 133, 329 (1984).
[CrossRef]

Blinov, L. M.

L. M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer, 1993), Chapter 2.

Bodnar, V. H.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199 (1997).
[CrossRef]

Bos, P.J.

P.J. Bos and K. Koehler, “The pi-cell: A fast liquid crystal optical switching device,” Mol. Cryst. Liq Cryst. 133, 329 (1984).
[CrossRef]

Boul, P.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Bradley, A.R.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Chen, H.-Y.

H.-Y. Chen and W. Lee, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90, 033510-1/033510-3 (2007).
[CrossRef]

Chigrinov, V.G.

L. M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer, 1993), Chapter 2.

Colber, D.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Dai, H.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Hafner, J

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Huffman, C.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

Iversion, T.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Koehler, K.

P.J. Bos and K. Koehler, “The pi-cell: A fast liquid crystal optical switching device,” Mol. Cryst. Liq Cryst. 133, 329 (1984).
[CrossRef]

Lavrentovich, O. D.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199 (1997).
[CrossRef]

Lee, Hee-Kyu

Seung Hee Lee, Hee-Kyu Lee, Seung-Eun Lee, and Young Hee Lee, “Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal device,” Proc. SPIE 6487, OU-1, (2007).
[CrossRef]

Lee, R.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Lee, Seung Hee

Seung Hee Lee, Hee-Kyu Lee, Seung-Eun Lee, and Young Hee Lee, “Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal device,” Proc. SPIE 6487, OU-1, (2007).
[CrossRef]

Lee, Seung-Eun

Seung Hee Lee, Hee-Kyu Lee, Seung-Eun Lee, and Young Hee Lee, “Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal device,” Proc. SPIE 6487, OU-1, (2007).
[CrossRef]

Lee, W.

H.-Y. Chen and W. Lee, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90, 033510-1/033510-3 (2007).
[CrossRef]

W. Lee, C.-Y. Wang, and Yu-Cheng Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid crystal host,” Appl. Phys. Lett. 85, 513–515 (2004).
[CrossRef]

Lee, Wei

Wei Lee and Yu-Cheng Shih, “Effects of carbon-nanotubes doping on the performance of a TN-LCD”, Journal of SID,  13, 9 (2005).

Lee, Young Hee

Seung Hee Lee, Hee-Kyu Lee, Seung-Eun Lee, and Young Hee Lee, “Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal device,” Proc. SPIE 6487, OU-1, (2007).
[CrossRef]

Liu, J.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Lu, A.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Lu, R.

X. Nie, R. Lu, H. Xianyu, T. Wu, and S-T Wu, “Anchoring energy and cell gap effect on liquid crystal response time,” J. Appl. Phys. 95, 5502 (2004).

Nastishin, Yu. A.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199 (1997).
[CrossRef]

Nie, X.

X. Nie, R. Lu, H. Xianyu, T. Wu, and S-T Wu, “Anchoring energy and cell gap effect on liquid crystal response time,” J. Appl. Phys. 95, 5502 (2004).

Polak, R. D.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199 (1997).
[CrossRef]

Rinzler, A.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Roderiguez-Macias, F.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Shelimov, A.K.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Shih, Yu-Cheng

Wei Lee and Yu-Cheng Shih, “Effects of carbon-nanotubes doping on the performance of a TN-LCD”, Journal of SID,  13, 9 (2005).

W. Lee, C.-Y. Wang, and Yu-Cheng Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid crystal host,” Appl. Phys. Lett. 85, 513–515 (2004).
[CrossRef]

Shiyanovskii, S. V.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199 (1997).
[CrossRef]

Shon, Y.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Smalley, R.E.

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Wang, C.-Y.

W. Lee, C.-Y. Wang, and Yu-Cheng Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid crystal host,” Appl. Phys. Lett. 85, 513–515 (2004).
[CrossRef]

Wu, S-T

X. Nie, R. Lu, H. Xianyu, T. Wu, and S-T Wu, “Anchoring energy and cell gap effect on liquid crystal response time,” J. Appl. Phys. 95, 5502 (2004).

Wu, T.

X. Nie, R. Lu, H. Xianyu, T. Wu, and S-T Wu, “Anchoring energy and cell gap effect on liquid crystal response time,” J. Appl. Phys. 95, 5502 (2004).

Xianyu, H.

X. Nie, R. Lu, H. Xianyu, T. Wu, and S-T Wu, “Anchoring energy and cell gap effect on liquid crystal response time,” J. Appl. Phys. 95, 5502 (2004).

Appl. Phys. Lett. (2)

W. Lee, C.-Y. Wang, and Yu-Cheng Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid crystal host,” Appl. Phys. Lett. 85, 513–515 (2004).
[CrossRef]

H.-Y. Chen and W. Lee, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90, 033510-1/033510-3 (2007).
[CrossRef]

J. Appl. Phys. (2)

X. Nie, R. Lu, H. Xianyu, T. Wu, and S-T Wu, “Anchoring energy and cell gap effect on liquid crystal response time,” J. Appl. Phys. 95, 5502 (2004).

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199 (1997).
[CrossRef]

Journal of SID (1)

Wei Lee and Yu-Cheng Shih, “Effects of carbon-nanotubes doping on the performance of a TN-LCD”, Journal of SID,  13, 9 (2005).

Mol. Cryst. Liq Cryst. (1)

P.J. Bos and K. Koehler, “The pi-cell: A fast liquid crystal optical switching device,” Mol. Cryst. Liq Cryst. 133, 329 (1984).
[CrossRef]

Nature (1)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

Proc. SPIE (1)

Seung Hee Lee, Hee-Kyu Lee, Seung-Eun Lee, and Young Hee Lee, “Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal device,” Proc. SPIE 6487, OU-1, (2007).
[CrossRef]

Science (1)

J. Liu, A. Rinzler, H. Dai, J Hafner, A.R. Bradley, P. Boul, A. Lu, T. Iversion, A.K. Shelimov, C. Huffman, F. Roderiguez-Macias, Y. Shon, R. Lee, D. Colber, and R.E. Smalley, “Fullerene pipes,” Science 280, 1253– 1256 (1998).
[CrossRef] [PubMed]

Other (1)

L. M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer, 1993), Chapter 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The operation principles of OCB cells in a side view at the (a) splay, (b) bend and (c) homeotropic state. Long rods represent the director of liquid crystals while ellipsoids are doped CNTs.

Fig. 2.
Fig. 2.

The dielectric spectroscopy of CNT doped liquid crystal (a) ε of ZLI4792 and (b) ε of ZLI4792.

Fig. 3.
Fig. 3.

(a) The oscilloscope traces of transmission (Ch1) and applied voltage (Ch2) of planar cell filled of BL006. (b) The circles represent ln(δ0/δ) as a function of time, the solid line represents the fitting curve.

Fig. 4.
Fig. 4.

R(V-V′) vs. (V-V′) in a planar cell. The fitting region is selected at the linear region larger than 6Vth with a negative slope.

Fig. 5.
Fig. 5.

(a) The transmission vs. applied voltage curves of OCB cells with BL006 and BL006 plus CNT. (b) The gray levels of the cells of BL006 plus CNT.

Fig. 6.
Fig. 6.

(a) The measurement of response time. Channel 1 shows the optical signal collected by photo detector, and channel 2 shows the input voltage. (b) Transmission of response time measurement. Definition of response time is the duration between the transmissions of 90% to 10%.

Fig. 7.
Fig. 7.

The measured gray-level response times of the liquid crystal (a) BL006, (b) ZLI4792, (c) MLC6080 and TL204.

Fig. 8.
Fig. 8.

A step pulse with bias voltage (blue line) is applied to the cell. The cell went through splay to bend transition in stage A, and was switched to dark and bright state in stage B and C.

Tables (3)

Tables Icon

Table 1. A comparison of critical voltage Vc and dielectric permittivity ε before and after doping CNTs. The values of ε shown here are at taken at 1k Hz. The liquid crystal material parameters used in this study are measured at room temperature.

Tables Icon

Table 2. The summary of improvements in response times for the studied liquid crystals. The percentage of the improvement is the average from 8 gray scales.

Tables Icon

Table 3. The improvement in response time with an one-step pulse voltage.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V th = π K 1 ε 0 Δ ε .
ln ( δ 0 δ ) = 2 π 2 K 1 d 2 γ 1 t
R ( V V ) R 0 = J ~ 0 2 K 1 W d ( 1 + κ y p ) ( V V ) .
τ fall = γ 1 π 2 K ( d 2 + 4 d K W )
τ fall = γ 1 ε 0 Δ ε V b 2 π 2 K ( d 2 + 4 d K W )

Metrics